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Preface
If you have ever been interested in social media, machine learning, data science, 
statistical programming, or particularly Big Data—as it relates to extracting value 
from the data on the Web—then this book is for you. We are excited to provide 
an introduction to these topics based on our applied research experience. Social 
Media Mining with R exposes readers to both introductory and advanced sentiment 
analysis techniques through detailed examples and with a large dose of rigorous 
social science background. Additionally, this book introduces a novel, unsupervised 
sentiment analysis model. These techniques can be complex, often counterintuitive, 
and are nearly always laden with assumptions. This book provides readers with  
a how-to guide for implementing these models and, most importantly, explains 
the techniques in depth so users can deploy them appropriately and interpret their 
results correctly. It explains the theoretical grounds for the techniques described  
and serves to bridge the potential of social media, the theoretical issues surrounding 
its use, and the practical necessities of its implementation. Social Media Mining with 
R lays out valid arguments for the value of big social media data. The book provides 
step-by-step instructions on how to obtain, process, and analyze a variety of socially 
generated data as well as a theoretical background for helping researchers interpret 
and articulate their findings. The book includes R code and example data that can  
be used as a springboard as readers undertake their own analyses of business,  
social, or political data. Readers are not assumed to know R or statistical analysis  
but are pragmatically provided with the tools required to execute sophisticated  
data mining techniques on data from the Web.

Overall, Social Media Mining with R provides a theoretical background, comprehensive 
instructions, and state-of-the-art techniques such that readers will be well equipped to 
embark on their own analyses of social media data.

Thank you for reading!
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What this book covers
Chapter 1, Going Viral, introduces the readers to the concept of social media mining, 
sentiment analysis, the nature of contemporary online communication, and the facets 
of Big Data that allow social media mining to be such a powerful tool. Additionally, 
we provide some evidence of the potential and pitfalls of socially generated data and 
argue for the use of quantitative approaches to social media mining.

Chapter 2, Getting Started with R, highlights the benefits of using R for social media 
mining. Readers are then walked through the processes of installing, getting help  
for, and using R. By the end of this chapter, readers would become familiar with  
data import/export, arithmetic, vectors, basic statistical modeling, and basic 
graphing using R.

Chapter 3, Mining Twitter with R, explains that an obvious prerequisite to gleaning 
insight from social media data is obtaining the data itself. Rather than presuming 
that readers have social media data at their disposal, this chapter demonstrates how 
to obtain and process such data. It specifically lays out a technical foundation for 
collecting Twitter data in order to perform social data mining and provides some 
foundational knowledge and intuition about visualization.

Chapter 4, Potentials and Pitfalls of Social Media Data, highlights that measurement  
and inference can be challenging when dealing with socially generated data, 
including social media data. This chapter makes readers aware of common 
measurement and inference mistakes and demonstrates how these failures  
can be avoided in applied research settings.

Chapter 5, Social Media Mining – Fundamentals, aims to develop theory and intuition 
over the models presented in the final chapter. These theoretical insights are 
provided prior to the step-by-step model building instructions so that researchers 
can be aware of the assumptions that underpin each model, and thus apply them 
appropriately.

Chapter 6, Social Media Mining – Case Studies, helps to bring everything together in  
an accessible and tangible concluding chapter. This chapter demonstrates canonical 
lexicon-based, and supervised sentiment analysis techniques as well as laying out 
and executing a novel unsupervised sentiment analysis model. Each class of model  
is worked through in detail, including code, instructions, and best practices.  
This chapter rests heavily on the theoretical and social science information provided 
earlier in the book, but can be accessed right away by readers who already have the 
requisite understanding.

Appendix, Conclusions and Next Steps, wraps everything up with our final thoughts,  
the scope of the data mining field, and recommendations for further reading.
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What you need for this book
Readers will require the open source statistical programming language R (Version 
3.0 or higher) and are encouraged to use their favorite development environment. 
R is available at http://www.r-project.org. We prefer to use RStudio as our 
environment, which is available at http://www.rstudio.com/ide/download/.

Who this book is for
This book is appropriate for a wide audience. The thorough and careful introduction 
to social media, sentiment analysis, measurement, and inference make it appropriate 
for people with technical skills but little social science background. The introduction 
to R makes the book appropriate for people who lack any sort of programming 
background. The inclusion of well-studied, canonical sentiment analysis methods 
makes the book ideal for an introduction to this area of research, while the 
development of an entirely novel, unsupervised sentiment analysis model  
will be of interest to the advanced research community.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

R code is shown in the standard manner, where pound signs (#) are used to 
comment out code or to add unexecuted notes that add intuition about the code.  
The greater than sign (>) is used to show a new line of executed code. Readers can 
often expect some output to be added following the greater than sign to show the 
output from the execution.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Though there are several packages that do this, we prefer the twitteR package  
for its ease of use and flexibility."

A block of code is set as follows:

> install.packages("twitteR")
> library(twitteR)
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New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: "Now, simply click 
on the Create New Application button and enter the requested information."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

Alternately, you can contact the authors via their Twitter page: Richard Heimann  
@rheimann and Nathan Danneman @NDanneman.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.



Preface

[ 5 ]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/1770OS_Images.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we  
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with  
any aspect of the book, and we will do our best to address it.





Going Viral
In this chapter, we introduce readers to the concept of social media mining. We 
discuss sentiment analysis, the nature of contemporary online communication, and 
the facets of Big Data that allow social media mining to be such a powerful tool. 
Additionally, we discuss some of the potential pitfalls of socially generated data  
and argue for a quantitative approach to social media mining.

Social media mining using sentiment 
analysis
People are highly opinionated. We hold opinions about everything from 
international politics to pizza delivery. Sentiment analysis, synonymously referred to 
as opinion mining, is the field of study that analyzes people's opinions, sentiments, 
evaluations, attitudes, and emotions through written language. Practically speaking, 
this field allows us to measure, and thus harness, opinions. Up until the last 40 
years or so, opinion mining hardly existed. This is because opinions were elicited in 
surveys rather than in text documents, computers were not powerful enough to store 
or sort a large amount of information, and algorithms did not exist to extract opinion 
information from written language.

The explosion of sentiment-laden content on the Internet, the increase in computing 
power, and advances in data mining techniques have turned social data mining 
into a thriving academic field and crucial commercial domain. Professor Richard 
Hamming famously pushes researchers to ask themselves, "What are the important 
problems in my field?" Researchers in the broad area of natural language processing 
(NLP) cannot help but list sentiment analysis as one such pressing problem. 
Sentiment analysis is not only a prominent and challenging research area, but also a 
powerful tool currently being employed in almost every business and social domain. 
This prominence is due, at least in part, to the centrality of opinions as both measures 
and causes of human behavior.
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This book is an introduction to social data mining. For us, social data refers to data 
generated by people or by their interactions. More specifically, social data for the 
purposes of this book will usually refer to data in text form produced by people for 
other people's consumption. Data mining is a set of tools and techniques used to 
describe and make inferences about data. We approach social data mining with a 
potent mix of applied statistics and social science theory. As for tools, we utilize and 
provide an introduction to the statistical programming language R.

The book covers important topics and latest developments in the field of social data 
mining with many references and resources for continued learning. We hope it will be 
of interest to an audience with a wide array of substantive interests from fields such as 
marketing, sociology, politics, and sales. We have striven to make it accessible enough 
to be useful for beginners while simultaneously directing researchers and practitioners 
already active in the field towards resources for further learning. Code and additional 
material will be available online at http://socialmediaminingr.com as well as on 
the authors' GitHub account, https://github.com/SocialMediaMininginR.

The state of communication
The state of communication section describes the fundamentally altered modes of 
social communication fostered by the Internet. The interconnected, social, rapid, 
and public exchange of information detailed here underlies the power of social data 
mining. Now more than ever before, information can go viral, a phrase first cited as 
early as 2004.

By changing the manner in which we connect with each other, the Internet changed 
the way we interact—communication is now bi-directional and many-to-many. 
Networks are now self-organized, and information travels along every dimension, 
varying systematically depending on direction and purpose. This new economy with 
ideas as currency has impacted nearly every person. More than ever, people rely on 
context and information before making decisions or purchases, and by extension, 
more and more on peer effects and interactions rather than centralized sources.

The traditional modes of communication are represented mainly by radio 
and television, which are isotropic and one-to-many. It took 38 years for radio 
broadcasters and 13 years for television to reach an audience of 50 million, but the 
Internet did it in just four years (Gallup).
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Not only has the nature of communication changed, but also its scale. There were 50 
pages on the World Wide Web (WWW) in 1993. Today, the full impact and scope 
of the WWW is difficult to measure, but we can get a rough sense of its size: the 
Indexed Web contains at least 1.7 billion pages as of February 2014 (World Wide 
Web size). The WWW is the largest, most widely used source of information, with 
nearly 2.4 billion users (Wikipedia). 70 percent of these users use it daily to both 
contribute and receive information in order to learn about the world around them 
and to influence that same world—constantly organizing information around pieces 
that reflect their desires.

In today's connected world, many of us are members of at least one, if not more, 
social networking service. The influence and reach of social media enterprises such 
as Facebook is staggering. Facebook has 1.11 billion monthly active users and 751 
million monthly active users of their mobile products (Facebook key facts). Twitter 
has more than 200 million (Twitter blog) active users. As communication tools, they 
offer a global reach to huge multinational audiences, delivering messages almost 
instantaneously.

Connectedness and social media have altered the way we organize our 
communications. Today we have dramatically more friends and more friends 
of friends, and we can communicate with these higher order connections faster 
and more frequently than ever before. It is difficult to ignore the abundance of 
mimicry (that is, copying or reposting) and repeated social interactions in our social 
networks. This mimicry is a result of virtual social interactions organized into 
reaffirming or oppositional feedback loops. We self-organize these interactions via 
(often preferential) attachments that form organic, shifting networks. There is little 
question of whether or not social media has already impacted your life and changed 
the manner in which you communicate. Our beliefs and perceptions of reality, as 
well as the choices we make, are largely conditioned by our neighbors in virtual and 
physical networks. When we need to make a decision, we seek out for opinions of 
others—more and more of those opinions are provided by virtual networks.
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Information bounce is the resonance of content within and between social networks 
often powered by social media such as customer reviews, forums, blogs, microblogs, 
and other user-generated content. This notion represents a significant change when 
compared to how information has traveled throughout history; individuals no longer 
need to exclusively rely on close ties within their physical social networks. Social 
media has both made our close ties closer and the number of weak ties exponentially 
greater. Beyond our denser and larger social networks is a general eagerness to 
incorporate information from other networks with similar interests and desires. The 
increased access to networks of various types has, in fact, conditioned us to seek 
even more information; after all, ignoring available information would constitute 
irrational behavior.

These fundamental changes to the nature and scope of communication are crucial 
due to the importance of ideas in today's economic and social interactions. Today, 
and in the future, ideas will be of central importance, especially those ideas that 
bounce and go viral. Ideas that go viral are those that resonate and spur on social 
movements, which may have political and social purposes or reshape businesses and 
allow companies such as Nike and Apple to produce outsized returns on capital. 
This book introduces readers to the tools necessary to measure ideas and opinions 
derived from social data at scale. Along the way, we'll describe strategies for dealing 
with Big Data.

What is Big Data?
People create 2.5 quintillion bytes (2.5 * 1018) of data, or nearly 2.3 million Terabytes 
of data every day, so much that 90 percent of the data in the world today has 
been created in the last two years alone. Furthermore, rather than being a large 
collection of disparate data, much of this data flow consists of data on similar things, 
generating huge data-sets with billions upon billions of observations. Big Data  
refers not only to the deluge of data being generated, but also to the astronomical 
size of data-sets themselves. Both factors create challenges and opportunities for  
data scientists.

This data comes from everywhere: physical sensors used to gather information, 
human sensors such as the social web, transaction records, and cell phone GPS 
signals to name a few. This data is not only big but is growing at an increasing 
rate. The data used in this book, namely, Twitter data, is no exception. Twitter was 
launched in March 21, 2006, and it took 3 years, 2 months, and 1 day to reach  
1 billion tweets. Twitter users now send 1 billion tweets every 2.5 days.
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What proportion of data is Big Data? It turns out that most data-sets are (relatively) 
small. This may come as a surprise in light of the contemporary excitement 
surrounding Big Data. The reason for the large number of small data-sets is that data 
that is not socially generated and publicly displayed is time consuming and expensive 
to collect. As such, academics, businesses, and other organizations with data needs 
tend to collect only the minimum amount of information necessary to gain purchase 
on their questions. These data-sets are usually small and focused and are curated by 
the organizations that use them; they usually do not plan on updating or adding fresh 
data to them. The poor management of these data often leads to their misplacement, 
thereby generating dark data—data that is suspected to exist or ought to exist but is 
difficult or impossible to find. The problem of dark data is real and prevalent in the 
myriad of small, locally collected data-sets. The utter lack of central management of 
data in the tail of the data size distribution invariably causes these sets of data to be 
forgotten. In spite of the fact that most data is not big, it is primarily the Big Data sets 
that exhibit exponential growth, propelling the number of bytes created by humans 
moving upwards daily.

Big Data differs substantially from other data not only in its size and velocity, but also 
in its scope and density. Big Data is large in scope, that is, it is created by everyone 
and by itself and thus is informative about a wide audience. This characteristic makes 
it very useful for studying populations, as the inferences we can make generalize to 
large groups of people. Compare that with, say, opinions gleaned from a focus group 
or small survey. These opinions, while highly accurate and easy to obtain, may or 
may not be reflective of the views of the wider public. Thus, Big Data's scope is a real 
benefit, at least in terms of generalizing evidence to wide populations.

However, Big Data's density is fairly low. By density, we mean the degree to which 
Big Data, and especially social data, is directly applicable to questions we want 
to answer. Again, a comparison to small data is useful. Prior to the explosion of 
Big Data and the proliferation of tools used to harness it, companies or political 
campaigns largely used focus groups or surveys to obtain information about public 
sentiments relevant to their endeavors. The focus groups and surveys furnished 
organizations with data that was directly applicable to their purpose, and often this 
data would already be measured with meaningful units. For instance, respondents 
would describe how much they liked or disliked a new product, or rate a political 
candidate's TV appearances from 1 to 5. Compare that with social data, where 
opinion-laden text is buried among terabytes of unrelated information and comes in 
a form that must be subjected to analysis just to generate a measure of the opinion. 
Thus, low density of big social data presents unique challenges to organizations 
trying to utilize opinion data.
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The size and scope of Big Data helps us overcome some of the hurdles caused by  
its low density. For instance, even though each unique piece of social data may  
have little applicability to our particular task, these small bits of information  
quickly become useful as we aggregate them across thousands or millions of  
people. Like the proverbial bundle of sticks—none of which could support  
inferences alone—when tied together, these small bits of information can be  
a powerful tool for understanding the opinions of the online populace.

The sheer scope of Big Data has other benefits as well. The size and coverage of 
many social data-sets creates coverage overlaps in time, space, and topic. This allows 
analysts to cross-refer socially generated sets against one another or against small-
scale data-sets designed to examine niche questions. This type of cross-coverage can 
generate consilience (Osborne)—the principle that states evidence from independent, 
unrelated sources can converge to form strong conclusions. That is, when multiple 
sources of evidence are in agreement, the conclusion can be very strong even when 
none of the individual sources of evidence are very strong on their own. A crucial 
characteristic of socially generated data is that it is opinionated. This point underpins 
the usefulness of big social data for sentiment analysis, and is novel. For the first time 
in history, interested parties can put their fingers to the pulse of the masses because 
the masses are frequently opining about what is important to them. They opine with 
and for each other and anyone else who cares to listen. In sum, opinionated data is 
the great enabler of opinion-based research.

Human sensors and honest signals
Opinion data generated by humans in real time presents tremendous opportunities. 
However, big social data will only prove useful to the extent that it is valid. This 
section tackles the extent to which socially generated data can be used to accurately 
measure individual and/or group-level opinions head-on.

One potential indicator of the validity of socially generated data is the extent of its 
consumption for factual content. Online media has expanded significantly over the 
past 20 years. For example, online news is displacing print and broadcast. More 
and more Americans distrust mainstream media, with a majority (60 percent) now 
having little to no faith in traditional media to report news fully, accurately, and 
fairly. Instead, people are increasingly turning to the Internet to research, connect, 
and share opinions and views. This was especially evident during the 2012 election 
where social media played a large role in information transmission (Gallup).
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Politics is not the only realm affected by social Big Data. People are increasingly 
relying on the opinions of others to inform about their consumption preferences. 
Let's have a look at this:

• 91 percent of people report having gone into a store because of an  
online experience

• 89 percent of consumers conduct research using search engines
• 62 percent of consumers end up making a purchase in a store after 

researching it online
• 72 percent of consumers trust online reviews as much as personal 

recommendations
• 78 percent of consumers say that posts made by companies on social media 

influence their purchases

If individuals are willing to use social data as a touchstone for decision making in 
their own lives, perhaps this is prima facie evidence of its validity. Other Big Data 
thinkers point out that much of what people do online constitutes their genuine 
actions and intentions. The breadcrumbs left from when people execute online 
transactions, send messages, or spend time on web pages constitute what Alex Petland 
of MIT calls honest signals. These signals are honest insofar as they are actions taken 
by people with no subtext or secondary intent. Specifically, he writes the following:

"Those breadcrumbs tell the story of your life. It tells what you've chosen to do. 
That's very different than what you put on Facebook. What you put on Facebook 
is what you would like to tell people, edited according to the standards of the day. 
Who you actually are is determined by where you spend time, and which things 
you buy."
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To paraphrase, Petland finds some web-based data to be valid measures of people's 
attitudes when that data is without subtext or secondary intent; what he calls data 
exhaust. In other words, actions are harder to fake than words. He cautions against 
taking people's online statements at face value, because they may be nothing more 
than cheap talk.

Anthony Stefanidis of George Mason University also advocates for the use of  
social data mining. He favorably speaks about its reliability, noting that its size 
inherently creates a preponderance of evidence. This book takes neither the strong 
position of Pentland and honest signals nor Stefanidis and preponderance of evidence. 
Instead, we advocate a blended approach of curiosity and creativity as well as some 
healthy skepticism.

Generally, we follow the attitude of Charles Handy (The Empty Raincoat, 1994), who 
described the steps to measurement during the Vietnam War as follows:

"The first step is to measure whatever can be easily measured. This is OK as far as 
it goes. The second step is to disregard that which can't be easily measured or to 
give it an arbitrary quantitative value. This is artificial and misleading. The third 
step is to presume that what can't be measured easily really isn't important. This 
is blindness. The fourth step is to say that what can't be easily measured really 
doesn't exist. This is suicide."

The social web may not consist of perfect data, but its value is tremendous if used 
properly and analyzed with care. 40 years ago, a social science study containing 
millions of observations was unheard of due to the time and cost associated with 
collecting that much information. The most successful efforts in social data mining 
will be by those who "measure (all) what is measurable, and make measurable (all) 
what is not so" (Rasinkinski, 2008).

Ultimately, we feel that the size and scope of big social data, the fact that some of it is 
comprised of honest signals, and the fact that some of it can be validated with other 
data, lends it validity. In another sense, the "proof is in the pudding". Businesses, 
governments, and organizations are already using social media mining to good 
effect; thus, the data being mined must be at least moderately useful.

Another defining characteristic of big social data is the speed with which it is 
generated, especially when considered against traditional media channels. Social 
media platforms such as Twitter, but also the web generally, spread news in near-
instant bursts. From the perspective of social media mining, this speed may be a 
blessing or a curse. On the one hand, analysts can keep up with the very fast-moving 
trends and patterns, if necessary. On the other hand, fast-moving information is 
subject to mistakes or even abuse. 
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Following the tragic bombings in Boston, Massachusetts (April 15, 2013), Twitter 
was instrumental in citizen reporting and provided insight into the events as they 
unfolded. Law enforcement asked for and received help from general public, 
facilitated by social media. For example, Reddit saw an overall peak in traffic when 
reports came in that the second suspect was captured. Google Analytics reports that 
there were about 272,000 users on the site with 85,000 in the news update thread 
alone. This was the only time in Reddit's history other than Obama AMA that a thread 
beat the front page in the ratings (Reddit).

The downside of this fast-paced, highly visible public search is that masses can 
be incorrect. This is exactly what happened; users began to look at the details and 
photos posted and pieced together their own investigation—as it turned out, the 
information was incorrect. This was a charged event and created an atmosphere that 
ultimately undermined the good intentions of many. Other efforts such as those by 
governments (Wikipedia) and companies (Forbes) to post messages favorable to their 
position is less than well intentioned. Overall, we should be skeptical of tactical (that 
is, very real time) uses of social media. However, as evidence and information are 
aggregated by social media, we expect certain types of data, especially opinions and 
sentiments, to converge towards the truth (subject to the caveats set out in Chapter 4, 
Potentials and Pitfalls of Social Media Data).

Quantitative approaches
In this research, we aim to mine and summarize online opinions in reviews, tweets, 
blogs, forum discussions, and so on. Our approach is highly quantitative (that is, 
mathematical and/or statistical) as opposed to qualitative (that is, involving close 
study of a few instances). In social sciences, these two approaches are sometimes 
at odds, or at least their practitioners are. In this section, we will lay out the 
rationale for a quantitative approach to understanding online opinions. Our use of 
quantitative approaches is entirely pragmatic rather than dogmatic. We do, however, 
find the famous Bill James' words relating to the quantitative and qualitative tension 
to resonate with our pragmatic voice.

"The alternative to good statistics is not "no statistics", it's bad statistics. People 
who argue against statistical reasoning often end up backing up their arguments 
with whatever numbers they have at their command, over- or under-adjusting in 
their eagerness to avoid anything systematic."
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One traditional rationale for using qualitative approaches to sentiment analysis, 
such as focus groups, is lack of available data. Looking closely at what a handful of 
consumers think about a product is a viable way to generate opinion data if none, or 
very little, exists. However, in the era of big social data, analysts are awash in opinion-
laden text and online actions. In fact, the use of statistical approaches is often necessary 
to handle the sheer volume of data generated by the social web. Furthermore, the 
explosion of data is obviating traditional hypothesis-testing concerns about sampling, 
as samples converge in size towards the population of interest.

The exploration of large sets of opinion data is what Openshaw (1988) would call a 
data-rich but theory-poor environment. Often, qualitative methods are well suited 
for inductively deriving theories from small numbers of test cases. However, our 
aim as sentiment analyzers is usually less theoretical and more descriptive; that is, 
we want to measure opinions and not understand the process by which they are 
generated. As such, this book covers important quantitative methods that reflect 
the state of discipline and that allow data to have a voice. This type of analysis 
accomplishes what Gould (1981) refers to as "letting the data speak for itself."

Perhaps the strongest reason to choose quantitative methods over qualitative ones is 
the ability of quantitative methods, when coupled with large and valid data-sets, to 
generate accurate measures in the face of analyst biases. Qualitative methods, even 
when applied correctly, put researchers at risk of a plethora of inferential problems. 
Foremost is apophenia, the human tendency to discover patterns where there are 
none; for example, a Type I error of sorts and dubbed patternicity by Michael Shermer 
(2008). A second pitfall of qualitative work is the atomistic fallacy, that is, the 
problem of generalizing based on an insufficient number of individual observations. 
The atomistic fallacy is real. Most people rely on advice from only a few sources, 
over-weighting information from within their networks rather than third parties 
such as Consumers Reports. Allowing an individual observation (for example, 
an opinion) to influence our actions or decisions is unreliably compared to what 
constitutes sensible samples in Consumers Reports.

The natural sciences benefited from the invention and proliferation of a host of 
new measurement tools during the twentieth century. For example, advances in 
microscopes led to a range of discoveries. The advent of the social web, with its 
seemingly endless amounts of opinionated data, and new measurement tools such as 
the ones covered in this book calls for a set of new discoveries. This book introduces 
readers to tools that will assist in that pursuit.



Chapter 1

[ 17 ]

Summary
In this chapter, we introduced readers to the concepts of social media, sentiment 
analysis, and Big Data. We described how social media has changed the nature of 
interpersonal communication and the opportunities it presents for analysts of social 
data. This chapter also made a case for the use of quantitative approaches to measure 
all that is measurable, and make the one which is not so measurable.

In the next chapter, we will introduce R, which is the main tool through which we will 
illustrate techniques for harvesting, analyzing, and visualizing social media data.





Getting Started with R
In this chapter, we lay out the case for using R for social media mining. We then  
walk readers through the processes of installing, getting help for, and using R. By  
the end of this chapter, readers will have gained familiarity with data import/export, 
arithmetic, vectors, basic statistical modeling, and basic graphing using R.

Why R?
We strongly prefer using the R statistical computing environment for social data 
mining. This chapter highlights the benefits of using R, presents an introductory 
lesson on its use, and provides pointers towards further resources for learning  
the R language.

At its most basic, R is simply a calculator. You can ask it what 2 + 2 is, and it will 
provide you with 4 as the answer. However, R is more flexible than the calculator 
you used in high school. In fact, its flexibility leads it to be described as a statistical 
computing environment. As such, it comes with functions that assist us with 
data manipulation, statistics, and graphing. R can also store, handle, and perform 
complex mathematical operations on data as well as utilize a suite of statistics-
specific functions, such as drawing samples from common probability distributions. 
Most simply, R is data analysis software adoringly promoted as being made by 
statisticians for statisticians. The R programming language is used by data scientists, 
statisticians, formal scientists, physical scientists, social scientists, and others who 
need to make sense of data for statistical analysis, data visualization, and predictive 
modeling. Fortunately, with the brief guidance provided by this chapter, you too 
will be using R for your own research. R is simple to learn, even for people with no 
programming or statistics experience.
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R is a GNU (GNU's Not Unix) project, where GNU's Not Unix is a recursive 
acronym for GNU and is less commonly referred to as GNU S. R is freely available 
under the GNU General Public License, and precompiled binary versions are 
provided for most common operating systems. R uses a command-line interface; 
however, several integrated development environments are available for use with  
R, including our preferred one, RStudio.

The following nine important questions ought to drive whether to use R or some 
other statistical language:

•  Does the software run natively on your computer?
 ° R compiles and runs on a variety of Unix platforms as well as on 

Windows and Mac OS.

• Does the software provide the methods needed?
 ° R comes with a moderate compliment of built-in functions and is 

wildly extensible through user-generated packages from a variety  
of disciplines.

• If not, how extensible is the software, if at all?
 ° R is extremely extensible and extending it is simple. Packages  

are provided by a robust academic and practitioner community  
and are available for inclusion through simple downloads.

• Does the software fully support programming versus point-and-click?
 ° Users can utilize R as an interactive programming language or a 

scripting language. There are also packages, such as Rcmdr, that 
allow limited point-and-click functionality.

• Are the visualization options adequate for your needs?
 ° R has a very powerful, simple-to-use suite of graphical  

capabilities. Additionally, these capabilities are extensible  
just like R's other capabilities.

• Does the software provide output in the form you prefer?
 ° R can output data files in many formats and can produce  

graphics in a wide range of formats as well.

• Does the software handle large datasets?
 ° R handles data in memory; thus, users are constrained by the 

memory of their local system. However, within that constraint,  
R can handle vectors of up to 2 gigabytes in length. Packages  
can extend R to work in cloud computing environments.
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• Can you afford the software?
 ° R is free, as in free beer.

R is an open source software, which means that members of the public invented it 
and they now maintain and distribute it, as opposed to a corporation or other private 
entity. Mainstream reasons to use open source software have historically hinged 
on the free aspect, that is, free as in free beer. In the past, open source projects have 
often been plagued with serious drawbacks such as having limited functionality, 
being buggy, not staying up-to-date, and being difficult to get help with. However, 
open source projects such as R attract a large community of developers and users 
to overcome these issues. Furthermore, R has an expansive (and expanding) 
functionality and is constantly updated; thanks to the large number of people using 
and developing it, help is nearly always just a Google away. The open source nature 
of R makes it free, as in free beer, and also free, as in freedom from vendor lock-in, 
which is what Richard Stallman advocates as the best reason for moving to open 
source projects. As Mozilla's Firefox browser has commandingly demonstrated,  
open source software can be excellent and approachable as opposed to being aimed 
at niche users.

The excellence of R has several consequences, each of which in turn cause R to 
become better. First and foremost, R is extensible. Individuals can contribute add-
on components called packages to R, which execute algorithms, create graphics, or 
perform other tasks. The number of these packages has grown exponentially over 
time; as of early 2014, there were over 5,000. Furthermore, many of these packages 
are multiplicatively useful when combined, making them more valuable as a whole 
than the sum of their individual utilities.

Secondly, R has a large and growing community of users and contributors, largely 
due to its excellence and broad utility. R has proven useful to so many that the 
traffic flow about it on e-mail discussion forums now outstrips the traffic on all of 
its main commercial contemporaries such as Stata, SAS, and SPSS. Similarly, the 
traffic related to R on Stack Overflow (http://stackoverflow.com), a software help 
forum, has outstripped SAS as well as some generic computing languages, such as 
PERL. Perhaps what's most telling is the fact that, at the time of writing this book 
(early 2014), more than half of the users on Kaggle (http://www.r-bloggers.com/
how-kaggle-competitors-use-r/)—a site that promotes high-end data analysis 
competitions—use R.

R's popularity is indicative of its quality and broad utility. Additionally, the large 
number of active users make it much easier to get help with R through forums such as 
Stack Overflow and others (if R's built-in help documentation doesn't already answer 
your questions). Additionally, there are many books currently available in print that 
walk users through how to perform intermediate and advanced general programming 
in R as well as demonstrate R's use for particular domains (such as this one).



Getting Started with R

[ 22 ]

The justification for using R is overwhelming. We find R to have an excellent 
combination of freedom (both kinds), flexibility, and power. In addition, R has 
growing capabilities in handling Big Data in distributed systems or in parallel; 
some examples include Distributed Storage and List (dsl), HadoopInteractiVE 
(hive), Text Mining Distributed Corpus Plug-In (tm.plug.dc), Hadoop Steaming 
(HadoopSteaming), and Amazon Web Services (AWS.tools). So, let's get started.

Quick start
To install R, simply navigate to http://www.r-project.org and choose a mirror 
near you. Then, select whether you want R for Linux, Windows, or Mac. Finally, just 
follow the instructions from there, and you'll be up in no time. For additional FAQs, 
refer to http://cran.r-project.org/faqs.html.

In addition to installing R, you will almost certainly want to install an integrated 
development environment (IDE). An IDE is a programming environment that offers 
features beyond what is found by using the terminal or a command-line environment. 
These features can include code editing/highlighting/completion/generation, code 
compiling, code debugging, a file manager, a package manager, and a graphical user 
interface (GUI). These features will make generating and managing your R code 
simpler. There are a plethora of options, but we have a slight preference for RStudio, 
which is shown in the previous screenshot. It is recommended that you install RStudio 
(http://www.rstudio.com) before working through the examples discussed in this 
book. As we move forward, note that all of the following R code will be available 
online on the authors' web page and GitHub.
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The basics – assignment and arithmetic
R allows access to the central math operators through their standard character 
representations: exponentiation (^), multiplication (*), division (/), addition (+), and 
subtraction (-). As you will see in the next example, R respects the order of operations.

The carrot (>) symbol denotes lines of code being inputted to R, while lines without 
(>) denote the output from R. In some circumstances, R will number its output; we'll 
point that out as it arises. Finally, R does not read code following a pound sign (#), 
which allows users to write comments for themselves and others right in the  
code itself:

> 2^4-3
13
> 2^(4-3)
2

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Functions, arguments, and help
R has many built-in functions. A function is a programming construct that takes 
input, calls arguments, and turns them into output. Some functions only take one 
argument. An example of this is as follows:

> sqrt(16)
4

Other functions take several arguments. Generally, R can use the order in which you 
provide the arguments to understand the arguments respectively; however, it is a 
good practice to explicitly label your arguments, which are generally separated by 
commas. R does not read or care about spaces, but it is a good practice to include 
spaces between operators and after commas for better readability, as follows:

# Take the log of 100 with base 10
> log(100, 10)
2
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# Though not necessary, it is best practice to label arguments
# This avoids confusion when functions take many arguments
> log(100, base=10)
2

To get help with a function, you can use the help function or type a question mark 
before a term. Using double question marks broadens the search, as shown in the 
following code:

> help(log)
> ?log
> ??log

Assignment is an important concept in R. We can assign values to an object, then 
treat that object as if it were the value it stores. An example should make this much 
more clear. Note the use of the left-facing arrow (<-) for assignment. Although you 
can assign with a right arrow or a single equals sign, only using the left arrow helps 
avoid confusion. An example of the assignment concept is shown as follows:

# Assign the value 3 to the object called 'my.variable'
> my.variable<- 3
# Work with the object
> my.variable * 2
[1] 6
# Create a new variable
> other.object<- my.variable + 7
> other.object * 2
[1] 20

R utilizes logical operators in addition to arithmetic operators. Logical operators are 
those that compare entities and return values of either TRUE or FALSE. Note that the 
double equals sign is used to ask a question, while the single equals sign is used for 
assignment (though the arrow should be strongly preferred for assignment to  
avoid confusion):

> 2==3
[1] FALSE
> 4 >= 4
[1] TRUE
"hello" != "HELLO"
[1] TRUE
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Vectors, sequences, and combining 
vectors
Many R operations can be performed, or performed more efficiently, on vectors or 
matrices. Vectors are strings of objects; matrices are two-dimensional collections of 
objects, usually numbers. The c operator, which means concatenate, creates simple 
vectors, while the colon (:) operator generates simple sequences. To construct matrices, 
one simply passes a vector of data, the dimensions of the matrix to be created, and 
whether to input the data by row or by column (the default behavior is to input data 
by row). Examples of vectors, sequences, and matrices are given as follows:

> c(1,2,3,4,5)
1 2 3 4 5

> 1:4
1 2 3 4

> 5:-1
5 4 3 2 1 0 -1

> matrix(data=c(1, 2, 3, 4), byrow=TRUE, nrow=2)
1 2
3 4

For more complex sequence-like vectors, you can use the seq() function. At a 
minimum, it takes two arguments: from and to. You can additionally specify a by 
argument as well:

> seq(from=1, to=5)
1 2 3 4 5

> seq(from=2, to=6, by=2)
2 4 6

R also contains several constructs that allow access to individual elements or subsets 
through indexing operations. In the case of basic vector types, one can access the 
i th element by using x[i], but there is also indexing of lists (which are simply 
collections of other data types), matrices, and multidimensional arrays (that is, 
matrices with more than two dimensions). In addition, R has a data type called a 
data frame, which is what many readers familiar with Stata, SPSS, or Microsoft Excel 
would think of as a dataset or spreadsheet. Data frames have column and possibly 
row names as well. R has three basic indexing operators, which is displayed in the 
following examples:

x[i]    # read the i-th element of a vector
x[i, j] # read i-th row, j-th column element of a matrix
x[[i]]  # read the i-th element of a list
x$a     # read the variable named "a" in a data frame named x
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For lists, one generally uses [[ to select any single element, whereas [ returns a list 
of the selected elements. Many operators can work over vectors, as shown in the 
following code:

# divides each number in vector by 2
> c(1,2,3,4,5) / 2     
0.5 1.0 1.5 2.0 2.5

# first vector divided by second
> c(1,2,3,4,5) / c(5,4,3,2,1) 
0.2 0.5 1.0 2.0 5.0

# log base 10 of vector 
> log(c(1,2.5,5), base=10)     
0.00000 0.39794 0.69897

# new variable x is assigned resultant set
> x <- c(1,2,3,4,5) / 2   
> x
0.5 1.0 1.5 2.0 2.5

# generic function 'summary' on variable x
> summary(x)      
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
    0.5     1.0     1.5     1.5     2.0     2.5 

# function to find mean 
# notice mean is also captured by the generic function 'summary'
> mean(x)        
1.5

A quick example – creating data frames 
and importing files
Getting data into R is often the first step in an analysis. R has a suite of functions 
called read, such as read.csv(), to help import data. Here, we assign the values 
read from a CSV file to an object called mydata as shown in the following code:

> mydata<- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
          
# returns the first few rows of the data
> head(mydata)      
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  admit  gre  gpa rank
1     0 380 3.61    3
2     1 660 3.67    3
3     1 800 4.00    1

To the initial confusion of some, several R functions behave differently depending 
on the type of object on which they act. As we saw earlier, the summary() function 
outputs descriptive statistics when it is given a vector. When given a data frame, it 
outputs summary statistics for each variable, as shown in the following code:

> summary(mydata)
     admit             gre             gpa       
Min.   :0.0000   Min.   :220.0   Min.   :2.260  
 1st Qu.:0.0000   1st Qu.:520.0   1st Qu.:3.130  
Median :0.0000   Median :580.0   Median :3.395  
 Mean   :0.3175   Mean   :587.7   Mean   :3.390  
 3rd Qu.:1.0000   3rd Qu.:660.0   3rd Qu.:3.670  
 Max.   :1.0000   Max.   :800.0   Max.   :4.000  

R has many built-in functions for fitting statistical models. For example, we can 
estimate a linear regression model, that is, a model that predicts the level of a 
continuous variable with another continuous variable(s), by ordinary least squares 
(OLS) with the first two lines of the next code. Note that the tilde (~) in the following 
code is used to separate the left-hand side of the equation from the right-hand side 
of the equation. In this simple regression example, we are regressing y on x, or gre 
(mydata$gre) on gpa (mydata$gpa). When the summary command is used with a 
model as the argument, parameter estimates are displayed along with other auxiliary 
information. Finally, we present the regression example as a demonstration of a 
classical method in social science used on structured data. This book departs from 
these classical methods and structured data:

> mydata.model<- lm(mydata$gre~mydata$gpa)   
> summary(mydata.model)

Call:
lm(formula = mydata$gre ~ mydata$gpa)    

Residuals:
     Min       1Q   Median       3Q      Max 
-302.394  -62.789   -2.206   68.506  283.438 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   192.30      47.92   4.013 7.15e-05 ***
mydata$gpa    116.64      14.05   8.304 1.60e-15 ***
---
Signif.codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
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One of R's great features is its extensibility. For instance, the foreign package allows 
users to import data formats other than those that R supports natively. To install a 
package, simply enter the following command in the terminal:

> install.packages("foreign", dependencies=TRUE)

The first argument to the function is the package name, and the second argument 
tells R to additionally install any other packages on which the one being installed is 
dependent. You will be asked to pick a mirror, that is, a location to download from. 
Choose one (it doesn't really matter which) and then input the following command 
to load the package:

> library("foreign")

To see all the different uses for this package, type ?foreign as a command. One 
package that is particularly useful is the sos package, which allows you to search 
for other packages using colloquial search terms with the findFn() function. For 
example, when searching for a package that does non-linear regression, one could 
use the following command:

> library("sos")
findFn("non-linear regression")

Visualization in R
Visualization is a powerful tool for analyzing data and for presenting results. Many 
relationships and patterns that are obscured by summary statistics can be brought to 
light through visualization. The next graph shows a potent example of this. To begin 
with, let's look at some data that R comes with on the stopping distance of cars. This 
variable is contained in a dataset called cars, in a variable called dist. Histograms 
provide an informative way to visualize single variables. We can make a histogram 
with one line of code:

> hist(cars$dist)

Histogram of cars$dist

cars$dist

0 20 40 60 80 100 120
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R makes the histogram, decides how to break up the data, and provides default 
labels for the graph title and the x and y axes. Type the ?hist() command to see 
other arguments to this function that change the number of bars, the labels, and  
other features of the histogram.

Anscombe's quartet comprises four small datasets with two variables each. Each of the 
sets has similar mean and variance for both variables, and regressions of y on x in each 
dataset generate nearly identical regression estimates. Overall, we might be tempted to 
infer that these datasets are nearly identical. However, bivariate visualization (of the x 
and y variables from each dataset) using the generic plot() function shows otherwise. 
At a minimum, the plot() function takes two arguments, each as a vector of the same 
length. To create the following four plots, enter the following commands for each pair 
of x and y (x1 and y1, x2 and y2, x3 and y3, and finally x4 and y4):

# par can be used to set or query graphical parameters.
# subsequent figures will be drawn in a n-row-by-n-column array (e.g. 
2,2)
#par(mfrow=c(2,2)) 
> plot(anscombe$x1, anscombe$y1, xlab="x1", ylab="y1",
  main="Anscombe 1")
> abline(lm(anscombe$y1~anscombe$x1)

The code discussed earlier shows how to create your own x and y axis labels and plot 
titles. The abline call adds straight lines to an existing plot, in this case, the best fit 
(or regression) line of y on x. The output of the previous code is shown as follows:

Anscombe 1 Anscombe 2

Anscombe 3 Anscombe 4

4 6 8 12

x3

4 6 8 12

x1 x2

4 6 8 12

8 12 16

x4
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This exercise not only demonstrates some simple graphical commands, but also 
the importance of visualization generally. In later chapters, we elaborate on these 
graphical methods to enhance analyses and the presentation of analytical results.

Style and workflow
Statistical programmers can think of R code—like other languages—as being 
dysfunctional, functional but awkward, or graceful. Graceful code is clear and 
readable, which helps prevent errors. Here are a few tips on writing graceful R code:

• Filenames should end in .R and be meaningful.
• Variable names should be short. If necessary, use a period to delineate 

multiword variable names (for example, my.variable).
• Keep every line short. R will not terminate a command until all parentheses 

are closed, so feel free to wrap commands across lines for brevity.
• Use spaces before and after assignment, after commas, and around 

parentheses and operators (such as +) for readability.
• Use the left arrow with hyphen (<-) for assignment, never the single  

equals sign.

For more details on writing good R code, refer to the guide at http://google-
styleguide.googlecode.com/svn/trunk/Rguide.xml. Again, though R can be 
used interactively from within the terminal, it is best practice to develop code within 
an IDE, such as RStudio, so that it can be saved, changed, and rerun. Additionally, 
building version controls and persistence into your code by storing it on GitHub may 
be important, especially if you find yourself working in a group environment. Finally, 
many users will find the creation of projects useful—the RStudio documentation offers 
useful tips on this topic.

Additional resources
This chapter provides what we hope is a useful, though necessarily brief, 
introduction to R. There are many resources available that will help you expand your 
R programming skill set. What follows is a short list of our favorites:

• A First Course in Statistical Programming with R by Braun and Murdoch (2007)
• The R Cookbook by Teetor (2011)
• Quick-R: http://www.statmethods.net/
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Summary
This chapter has set out a case for using R, the statistical computing environment for 
data handling and analysis due to R's zero cost feature, flexibility, and large support 
community. By now, you've seen how to import, summarize, and visualize datasets 
as well as run and plot simple regression models. In the next chapter, we discuss 
how to obtain the social media source Twitter.





Mining Twitter with R
An obvious prerequisite to gleaning insight from social media data is obtaining the 
data itself. Rather than presuming readers have social media data at their disposal, 
we show them how to obtain and process such data. Specifically, this chapter lays a 
technical foundation for collecting Twitter data in order to perform social data mining.

Why Twitter data?
In this chapter, we introduce a technical foundation for mining social data. We do so 
through a set of examples that focus on Twitter data, though the analyses are equally 
appropriate for data from other venues. That being said, our use of Twitter warrants 
a bit more explanation: what's so interesting about Twitter?

One answer to this question is nothing. Twitter is one of several social  
media networks, and there is little reason to suspect that data from Twitter is 
fundamentally different from other socially generated data. Another answer is that 
Twitter is different in subtle but important ways. One distinction is Twitter's ability 
to foster second-order connections, or what Granovetter (1973-1983) calls weak ties. 
These weak ties are important as they bring information to individuals from those 
with whom they share less, thus dramatically increasing information exposure. 
Second, Twitter, perhaps more than some other social networks, allows users to  
self-organize. A third answer is that Twitter users actively use Twitter to gather 
insight, make recommendations, and lodge public complaints. The extent to which 
users find this information valuable gives credence to the notion of its validity.
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Obtaining Twitter data
As expected, before analyzing Twitter data, one must obtain the data. One reason we 
like R for social media mining is that it makes obtaining targeted portions of Twitter 
data (relatively) simple. Besides having the capacity to read standard data types 
and files from traditional statistical software packages, R can also read many other 
specialized formats. For instance, R can read relational databases, Hadoop, and some 
web formats such as Twitter. This chapter first covers how to obtain Twitter data 
before describing some simple exploratory data analysis techniques.

To begin ingesting social media data from Twitter, you will need a developer 
account on Twitter. You can start one (free of cost) at https://dev.twitter.com/
apps. Once you have a Twitter account, return to that page and enter your username 
and password. Now, simply click on the Create New Application button and enter 
the requested information. Note that these inputs are neither important nor binding. 
You simply need to provide a name, description, and website (even just a personal 
blog) in the required fields.

Once finished, you should see a page with a lot of information about your 
application. Included here is a section called OAuth settings. These are crucial in 
helping you authenticate your application with Twitter, thus allowing you to mine 
tweets. More specifically, these bits of information will authenticate you with the 
Twitter application programming interface (API). You'll want to copy the consumer 
key, consumer secret, request token URL, authorize URL, and access token URL to  
a file and keep them handy.

Now that we have set up an application with Twitter, we need to download the 
R package that allows us to pull tweets into our local R session. Though there are 
several packages that do this, we prefer the twitteR package for its ease of use and 
flexibility. Instructions for downloading packages can be found in Chapter 2, Getting 
Started with R, but in general, installing packages is done by invoking install.
packages("…"). You can download the twitteR package and load it into your R 
session as follows:

> install.packages("twitteR")
> library(twitteR)

Now, we are just a few lines of R code away from pulling in Twitter data. If you are 
using a Windows machine, there is an additional prestep of downloading a cecert.
pem file, which forms a portion of certain types of certification schemes for Internet 
transfers, as shown in the following code snippet:

> download.file(url="http://curl.haxx.se/ca/cacert.pem",
destfile="C:/.../cacert.pem")
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In this example, we have saved the file to the C: directory, but you can save it to 
wherever you have the appropriate permissions on your machine. Also, note the use 
of the backslash instead of the Windows-standard forward slash in the file locations. 
Next, create R objects from your own consumer information, filled in here with XX  
to indicate a placeholder, as seen in the following lines of code:

> my.key <- "XX"
> my.secret <- "XX"

With that done, pass this information to a function called OAuthFactory. 
The requestURL, accessURL, and authURL in the following code snippet are 
demonstrative, but you should verify this information with that provided by  
Twitter as a part of authorizing your application:

> cred <- OAuthFactory$new(consumerKey=my.key,
    consumerSecret=my.secret,
    requestURL='https://api.twitter.com/oauth/request_token',
    accessURL='https://api.twitter.com/oauth/access_token',
    authURL='https://api.twitter.com/oauth/authorize')

Finally, input the cred$handshake call that follows this paragraph, including the 
full path to where you saved your cacert.pem file. This will bring up a URL in the R 
console that you will have to copy and paste into a browser. Doing so will take you 
to a Twitter page that will supply you with a numeric code that you can copy and 
paste into your instance of R after the cred$handshake call.

> cred$handshake(cainfo="C:/.../cacert.pem")

Finally, save your authentication settings as follows:

> save(cred, file="twitter authentication.Rdata")
> registerTwitterOAuth(cred)

The registerTwitterOAuth function returns a value of TRUE on success; you are 
now ready to begin mining Twitter data, and after all of these steps, it will seem very 
simple. The workhorse of the twitteR package is a function called, appropriately, 
searchTwitter. The standard arguments to the function are a search term, a number 
of tweets to return, and providing the cacert.pem file downloaded previously. 
More information about the function, including how to search specific time frames, 
geographic locations, and more, can be found by typing ?searchTwitter. For now, 
let's pull in some tweets with the #bigdata hashtag and save them to an object  
called bigdata as follows (note that you may leave off the cainfo argument on  
non-Windows machines):

> bigdata <- searchTwitter("#bigdata", n=1500, cainfo="cacert.pem") 
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We can find out what class or type of object bigdata is by using the class function 
as follows:

> class(bigdata)
[1] list

We easily discover that bigdata is a list or a collection of objects. We can access the 
first few objects in a list using the head() function as follows:

> head(bigdata) 
  

[[1]]
[1] "Timothy_Hughes: RT @MarketBuildr: Prescriptive versus #predictive 
#analytics http://t.co/oy7rS691Ht #BigData #Marketing"
  

[[2]]
[1] "DanVesset: already have on my schedule 3 upcoming business trips 
to #Texas .... where all data is #BigData"

[[3]]
[1] "imagineCALGARY: Excited to be working on our methodology for 
turning #bigdata into the story of #yyc's #sustainability journey: 
http://t.co/lzPMAEQIbN"

[[4]]
[1] "ozyind: RT @timoelliott: #BigData Will Save the Planet!!! 
http://t.co/Tumfrse5Kc by @jamesafisher #analytics #bi #marketing"

[[5]]
[1] "BernardMarr: Mining Big Data For Sales Leads http://t.co/
Xh5pBGskaG\n\n#bigdata\n#datamining\n#analytics"

[[6]]
[1] "mobiusmedia: RT @carmenaugustine: One size does not fit all: 
\"It's up to each professional to determine what they mean by #bigdata 
#discovery\" @jaimefit…"

You can access a particular object within a list by using double braces as follows:

> bigdata[[4]]
[1] "ozyind: RT @timoelliott: #BigData Will Save the Planet!!! 
http://t.co/Tumfrse5Kc by @jamesafisher #analytics #bi #marketing"

There is no guarantee that searchTwitter pulled in the number of tweets requested. 
We may have specified a small date range or an uncommon search term. Either way, 
we can check the length of the bigdata list-type object with the length() function  
as follows:

> length(bigdata)
1500
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Before we get too search-happy, it should be noted that the Twitter REST API (v1.1) 
limits the number of searches that can be performed in any given time period. The 
limits vary based on the type of search, the type of application making the search, as 
well as other criteria. Generally speaking, however, when using searchTwitter, you 
will be limited to 15 searches every 15 minutes, so make them count! More specific 
information on Twitter's rate limits can be found at https://dev.twitter.com/
docs/rate-limiting/1.1/limits.

The main tip to avoid the rate limit becoming a hindrance is to search judiciously for 
particular users, themes, or hashtags. Another option is to more frequently search 
for users and/or themes that are more active and reserve less active users or themes 
to intermittent search windows. It is best practice to keep track of your searches and 
rate limit ceilings by querying in R, or by adding rate limit queries directly to your 
code. If you plan to create applications rather than merely analyze data in R, other 
options such as caching may prove useful. The following two lines of code return the 
current number of each type of search that remains in a user's allotment, as well as 
when each search limit will reset:

> rate.limit <- getCurRateLimitInfo(c("lists"))
> rate.limit
    resource                 limit    remaining   reset
1  /lists/subscribers        180      180         2013-07-23 21:49:49
2  /lists/memberships        15       15          2013-07-23 21:49:49
3  /lists/list               15       15          2013-07-23 21:49:49
4  /lists/ownerships         15       15          2013-07-23 21:49:49
5  /lists/subscriptions      15       15          2013-07-23 21:49:49
6  /lists/members            180      180         2013-07-23 21:49:49
7  /lists/subscribers/show   15       15          2013-07-23 21:49:49
8  /lists/statuses           180      180         2013-07-23 21:49:49
9  /lists/show               15       15          2013-07-23 21:49:49
10 /lists/members/show       15       15          2013-07-23 21:49:49

To limit the number of searches we have to undertake, it can be useful to convert our 
search results to a data frame and then save them for later analysis. Only two lines of 
code are used, one to convert the bigdata list to a data frame and another to save 
that data frame as a comma-separated value file:

# conversion from list to data frame
> bigdata.df <- do.call(rbind, lapply(bigdata, as.data.frame))

# write to csv; fill in the … with a valid path
> write.csv(bigdata.df, "C:/…/bigdata.csv")
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Preliminary analyses
Text data, such as tweets, comes with little structure compared to spreadsheets 
and other typical types of data. One very useful way to impose some structure on 
text data is to turn it into a document-term matrix. This is a matrix where each row 
represents a document and each term is represented as a column. Each element in 
the matrix represents the number of times a particular term (column) appears in 
a particular document (row). Put differently, the i, jth element counts the number 
of times the term j appears in the document i. Document-term matrices get their 
length from the number of input documents and their width from the number of 
unique words used in the collection of documents, which is often called a corpus. 
Throughout this book, we utilize the tm package to create document-term matrices 
and for other utilities. The following lines of code install the tm package, preprocess 
our list object, bigdata, and turn it into a document-term matrix:

> install.packages("tm", dependencies=TRUE)
> library("tm")

> bigdata_list <- sapply(bigdata, function(x) x$getText())
> bigdata_corpus <- Corpus(VectorSource(bigdata_list))
> bigdata_corpus <- tm_map(bigdata_corpus, tolower)
> bigdata_corpus <- tm_map(bigdata_corpus, removePunctuation)
> bigdata_corpus <- tm_map(bigdata_corpus,    
    function(x)removeWords(x,stopwords()))

The first line uses a common family of functions (apply, lapply, and sapply). These 
functions, in general, deploy a function across a range of structured data. Sapply 
traverses a matrix, performs a function to retrieve text from the tweets, and turns the 
text into a list object, bigdata_list. The next line of code uses the Corpus function 
to turn the list of tweets into a corpus. A corpus is an abstraction in R to represent 
a collection of documents. The final three lines of code convert all of the words to 
lowercase, remove all punctuation, and drop stopwords, respectively. stopwords 
are very common words that do not carry much meaning, such as "a," "are," "that," 
and "the." A more complete list of stop words can be found at http://www.ranks.
nl/resources/stopwords.html.

At this point, we can take a first look at our data using the WordCloud package, 
which, unsurprisingly, creates word clouds. Let's have a look at the following  
code snippet:

> install.packages("wordcloud")
> library("wordcloud")
> wordcloud(bigdata_corpus)
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Now, let's go on to build the document-term matrix (or in this case, term-document 
matrix).

> bigdata.tdm <- TermDocumentMatrix(bigdata_corpus)

Simply calling the name of a term-document or document-term matrix pulls up 
some basic information about it, including the number of terms and documents, the 
number of non-zero (that is, non-sparse) cells, and some other information. Using 
the findFreqTerms function, we can access some of the most common terms in our 
matrix as follows:

> bigdata.tdm
A term-document matrix (532 terms, 99 documents)
Non-/sparse entries: 1024/51644 

Sparsity           : 98%
Maximal term length: 18
Weighting          : term frequency (tf)

# identify terms used at least 10 times
> findFreqTerms(bigdata.tdm, lowfreq=10)
[1] "analytics"   "big"   "bigdata"   "data"   "people"   "via"
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We can also explore the data in an associational sense by looking at collocation, or 
those terms that frequently co-occur. From the previous list, "people" seems to be 
unexpected; so, we can explore the association of "people" and other terms in the 
corpus as follows:

> findAssocs(bigdata.tdm, 'people', 0.50)
2013    best    analytics
0.77     0.64          0.55

In the preceding code, each number is the correlation in the term-document matrix 
between the term it references and the word "people". Another way to get a visual 
sense of a set of documents is to cluster them. Clustering, in general, is a way of 
finding associations between items (for example, documents). This necessitates a 
measure of how far each observation is from every other one. Nearby observations 
are binned together in groups, whereas the ones further apart are put into separate 
groups. There are many ways to implement clustering; here, we use a variant called 
hierarchical agglomerative clustering. Interested readers can find out more about 
clustering methods at http://www.statmethods.net/advstats/cluster.html.

We implement our chosen method by first removing the sparsest terms from 
our term-document matrix. Sparse terms are those which only occur in a small 
proportion of documents. By removing sparse terms, we reduce the length of the 
term-document matrix dramatically without losing relations inherent in the matrix. 
The sparse argument in the following line of code details the proportion of zeroes a 
term must have before being considered sparse:

# Remove sparse terms from the term-document matrix
> bigdata2.tdm <-removeSparseTerms(bigdata.tdm, sparse=0.92)

# Convert the term-document matrix to a data frame
> bigdata2.df <- as.data.frame(bigdata2.tdm)

Next, we scale the term-document matrix because clustering is sensitive to the scale 
of the data used. Specifically, the scale function subtracts every element in a vector 
from the vector's mean and divides each element by the vector's standard deviation. 
Once scaled, we use the term-document matrix to compute a distance matrix, where 
each row is a document and each column is the same set of documents. Each cell 
represents the distance between each pair of documents.

 # scale the data
> bigdata2.df.scale <- scale(bigdata2.df)

# Create the distance matrix
> bigdata.dist <- dist(bigdata2.df.scale, method = "euclidean")
# Cluster the data
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> bigdata.fit <- hclust(bigdata.dist, method="ward")
# Visualize the result
> plot(bigdata.fit, main="Cluster - Big Data")

# An example with five (k=5) clusters
> groups <- cutree(bigdata.fit, k=5)
# Dendogram with blue clusters (k=5).
> rect.hclust(bigdata.fit, k=5, border="blue")

bigfata.dist

hclust (*, “ward”)

Cluster - Big Data

The preceding dendrogram shows our clusters in a tree diagram. The bottom row 
shows individual observations with groupings increasing in size as we traverse up 
the tree. Our sample was small and so our dendrogram is small, and our clusters 
may reflect groupings that do not generalize outside of our sample. For example, 
bccmpls and lisarosie reflect a conference (hashtag: bccmpls) in July 2013 where 
lisarosie was mentioned. This is mainly an artifact of our small sample and may not 
have been evident if we analyzed all Twitter data for 2013. Much less surprising is 
the clustering of big and data, both of which are closely related to analytics.

This chapter has laid the groundwork for the analysis of social media data. We have 
given you the tools to search, save, manipulate, and visualize social data. We urge 
readers at this point to go find and visualize some data for themselves before moving 
on to the next chapter.
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Lastly, as a best practice, consider local- and cloud-based version control and code 
repositories. Both are great for professional, repeatable research and analysis efforts, 
and provide redundancy in the case of cloud-based version control systems. Git, 
GitHub, Dropbox, and Google Drive can all facilitate version control and code 
repositories. Git handles local version control and coupled with GitHub can move 
repositories to the cloud. GitHub stores data on the cloud (that is, remotely) to ensure 
that your code is preserved. Both Git and GitHub work well with RStudio. Dropbox 
and Google Drive offer only lightweight capability to do both version control and 
code repositories, but both are a bit more intuitive than Git. Understanding where 
your files are stored is a critical and often overlooked element in research and 
analysis. RStudio has some great mechanisms in place to manage files and projects. 
Whatever IDE you choose, learning more about managing data files, code, and 
plots are crucial to doing high quality work. In fact, these practices are so important 
that open source projects have been developed around this notion; one noteworthy 
example is ProjectTemplate (http://projecttemplate.net).

Summary
This chapter has provided an introduction to obtaining, manipulating, summarizing, 
and visualizing social media data. By now, you should be able to obtain Twitter  
data, save it, and store it locally in several formats. You should also be familiar  
with document-term matrices and several text exploration and visualization 
schemes. The next chapter discusses social media data from the perspective of  
social science research.



Potentials and Pitfalls of 
Social Media Data

Socially generated data, and especially social media data, comes with many 
complexities. Our ability to navigate these complexities as we describe and draw 
inferences from this data hinges on our thinking carefully about the potentials and 
pitfalls that arise in social media data. This chapter highlights some of the potentials 
and pitfalls of social media data.

Opinion mining made difficult
In this chapter, we highlight some of the potentials and pitfalls inherent in using 
social media data, and also in the tools we use to process it. These pitfalls are serious 
enough to warrant devoting an entire chapter to their enumeration and description. 
Though some of them cannot be ameliorated, we at least hope to give would-be 
analysts a fair warning so that they can enjoy their findings with an appropriately 
sized grain of salt.

In The Empty Raincoat, Handy described the first step to measurement as follows:

"The first step is to measure whatever can be easily measured. This is OK as far as 
it goes."

Twitter data is often used as the first step in measurement as it is easily obtained. 
University Professor and Princeton Fellow, Zeynep Tufekci (Tufekci, 2013), notes the 
danger in this practice using an analogy to the biological testing on Drosophila flies, 
better known as fruit flies. She points out that fruit flies are often used in laboratory 
settings because they are easy to breed and have simple life cycles. Tufekci cautions 
through a question: what if the fruit fly is systematically different than other organisms 
in ways beyond just their conveniently quick lifecycle? If so, the lessons learned 
from studying fruit flies may not generalize to other species. This would be doubly 
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problematic because their ease of use causes them to be the focus of a preponderance 
of genetic and other research.

Similarly, Zeynep notes that Twitter may be a model organism, that is, model in the 
sense of a model plane, not in the sense of a model student. Twitter data and other 
social media data is accumulated quickly and is easily mined from various websites' 
APIs. The pervasiveness and perceived richness of these sources of data make them 
obvious choices for researchers seeking to take the pulse of the public. However, 
the ease with which this data can be obtained does not necessarily correlate with 
quality inferences. Similar to the data obtained from Drosophila flies, social media 
data may have limited generalizing ability due to the fact that social media users 
are often young, urban, and middle-class. This and other such caveats to the use 
of social media forms the focus of this chapter. Layered on top of these inferential 
concerns is the special requirement that we be sensitive to the privacy of social media 
users—just because they have made their thoughts public does not mean we should 
shine a spotlight on individuals, lest we misrepresent them. In addition to discussing 
the inferential challenges surrounding the use of social media, this chapter also sets 
down some fundamentals about sentiment extraction and measurement.

The conversation in the remainder of this chapter takes a social science tilt. We feel 
that this approach and this background is especially important given that important 
segments of the social data mining community are steeped in the workings of 
computers and algorithms. Even though this is the case, they may not have had an 
occasion to be introduced to measurement theory, descriptive and causal inference, 
and the many fallacies that can plague our best efforts at deriving insights from data.

Sentiment and its measurement
Fundamentally, this book is about measuring the sentiments of human beings 
expressed through social media. To further this aim, we pause to set forth a 
structured definition of sentiment and characterize some ancillary components 
of sentiments. A sentiment is a view or attitude towards a person, place, or thing. 
It is an opinion that is directed and often has a valence. For our purposes, we 
consider seven different factors surrounding a sentiment, expanding on the classic 
quintuple (5-part object). The classic quintuple includes the holder h that expresses 
the sentiment; the target of the sentiment, g; the sentiment itself, s; the polarity or 
magnitude of the sentiment, p; and the source of the data, c (as distinct from the 
source of the sentiment).
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As an initial foray into sentiment analysis, we could analyze the sentence, "Mary 
thinks her new sneakers are really delightful." Mary is the holder or expresser of the 
sentiment delight. The target is obviously her sneakers, and the magnitude of her 
sentiment is strong or high as indicated by the adverb really. The source of this datum 
is the authors' imagination. In addition to these factors, we often find it useful to note 
the time and location of the expression of the sentiment, though these are absent from 
this example. The previous example's simplicity belies many extraordinary challenges 
in the field of sentiment analysis. Consider the following tweet:

@<username> I loooooooovvvvvveee my Kindle2. Not that the DX is cool, but the 2 
is fantastic in its own right.

The target of the sentiment is Kindle2, but a subtarget or the secondary target is 
Kindle DX; both are Amazon products and are viewed favorably. Kindle2 is loved 
by the user, but this is described atypically using loooooooovvvvvveee instead of love. 
Many sentiment analysis techniques rely on dictionaries, which may include love, 
but almost certainly not loooooooovvvvvveee.

Negation is also difficult to handle; consider sentences that include not, or more 
troublingly, not good or not bad. As we will see, negation can sometimes be partially 
captured by studying bigrams (two word pairs) instead of single words. This and 
other complexities serve to put something of an upper limit on  
the accuracy of our estimates of sentiment extracted from texts.

Not good and not bad negations complicate sentiment detection; intensification 
further compounds the difficulty of the task. Adjectives such as very, extremely, or 
hardly add or detract from the sentiment intensity. Superlatives form additional 
interesting cases such as "This wine is the most mediocre bottle I've ever purchased." 
Weighted terms in lexicons help mitigate negation and intensification, as does text 
scaling, discussed in Chapter 6, Social Media Mining – Case Studies.

Another example (Lui, 2012) that highlights further challenges is shown as follows:

"I bought a Canon G12 camera six months ago. I simply love it. The picture  
quality is amazing. The battery life is also long. However, my wife thinks  
it is too heavy for her."

This example contains a sentiment that is broken up across subtopics within the 
overall review of the camera, some with positive valence and some with negative. 
This review is useful to depict the classic quintuple that defines sentiment analysis. 
Here, the source is the person expressing the opinion, the targets are the various 
subcomponents of the camera, and the sentiments about the various targets are "love", 
"amazing", "long", and "heavy." The source c refers to where the textual sentiment 
information was found, be it Twitter, a blog, or a sentence or article in a magazine.
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The nature of social media data
The mechanical differences between blogs and/or consumer reviews and Twitter 
are obvious. Blogs and consumer review sites allow users to contribute finite but 
possibly large amounts of text data, whereas Twitter has a document length limit of 
140 characters. While at first this may seem like a major limitation of Twitter data, 
in fact, it proves to be quite useful. When faced with this stark limit, users tend to be 
pithy and accurate rather than loquacious and artful. This brevity makes sentiment 
extraction much simpler than it is for longer documents; however, it comes with its 
own unique challenges.

Throughout this book, social media data, and especially Twitter data, will be 
examined in increasing detail and with increasing sophistication. In order to 
accomplish this aim, we first need to get a sense of some of the complicating factors 
involved in studying sentiments. The first factor might well be that sentiment is 
often nonhomogeneous. For instance, groups of people may be split in their opinions 
about a topic. In fact, a single person may hold conflicting views as well. However, 
trying to condense group-level or individual-level sentiments into a single numeric 
measure may obscure this heterogeneity. For instance, a group of people with neutral 
views on a topic and a group with two vehemently opposed subgroups would both 
score nearly zero (or neutral) on many additive scales.

Traditional versus nontraditional  
social data
We compare social media data with traditional social science data in an effort to 
provide context for its analysis. In this section, we also make readers aware of the 
general classes of pitfalls that affect any measurements or inferences drawn from 
data. The ultimate goal of this discussion is to set out a sound analytical framework 
as well as generate an awareness of the limitations of social data and methods. This 
is so that analysts can "measure (all) what is measurable, and make measurable (all) 
what is not so" (Galileo, 2008) responsibly.

Prior to the era of high-velocity data, computational social scientists relied on two 
sources of observational (that is, nonexperimental) data: they could hand-code 
it themselves or use large, slow-moving datasets collated by governments and 
organizations. Collecting one's own data is slow and costly. It involves interviewing 
experts and checking for reference sources. This type of data collection is also 
prone to errors due to differences between coders or within coders over time if the 
collection is ever done again. An alternative is to use data sources that are large but 
slow to change. 
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For instance, the United States Census Bureau serves as a leading provider of 
demographic and economic data. The Census Bureau compiles mountains of 
data with broad coverage and high accuracy. However, the Bureau's best known 
collection, the Census of Population and Housing, is only collected once a decade 
and is often not appropriate for the sophisticated questions that we have today.

These surveys have been crucial to social scientific research. The multivariate nature 
of this data provides rich sets of independent and dependent variables. However, 
the aggregate and infrequent nature of institutional data often results in pooled cross 
sections of randomly sampled individuals at different points in time. Rather than 
analyzing groups at discrete points in time, or aggregating them into heterogeneous 
bundles, social media data allows the possibility of tracking groups and individuals 
over time.

Social media is captured at the individual level and at an extraordinary rate. Their 
continuous nature over time and space makes them ideal for multivariate analysis 
and cross-correlation. Furthermore, aggregating social data often proves to be much 
simpler than attempting to disaggregate institutional data. Put differently, inferential 
challenges surrounding the study of individuals are much more easily overcome 
than those surrounding the study of groups. We explore these issues one by one in 
the forthcoming sections.

The conversation about social media data often becomes a conversation about Big 
Data and how Big Data is hard to analyze. While some are caught up in defining 
Big Data in terms of storage (too big to fit in a relational database) or analysis (too 
big to use standard maximum likelihood techniques), we find that these definitional 
points are less crucial than a deep understanding of the measurement and inferential 
challenges inherent in dealing with social media data.

Measurement and inferential challenges
Many of the activities that fall under the umbrella term of data mining involve 
either measurement or inference, or possibly both. This section details some of the 
challenges researchers face when attempting to measure difficult social science 
concepts or trying to infer general patterns from subpopulation sets of data. These 
tasks, measurement and inference, are often one and the same in the social sciences. 
While one can use a ruler to measure height, there is no way to directly measure 
sentiment or affinity. Instead, we create proxy measures for these concepts and hope 
to make accurate inferences about these quantities.
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Overfitting is a common problem in social science research, especially in Big Data. 
The goal of many analyses is to quantify a relationship accurately. In an effort to do 
so, many researchers make a model of a particular dataset that fits that data very 
nicely. That is, the model explains a high proportion of the variation in the data at 
hand. These researchers often erroneously conclude that a model that fits their data 
well is a high-quality model. However, of crucial importance is how well they have 
captured the relationships in the data generally, not just in their small sample of 
data. A set of relationships that characterize a sample (also called training data) but 
do not fit other data of the same type or source (commonly referred to as test data) 
is said to be overfit. Though overfitting is a common problem in small data settings, 
researchers should be wary of it when using Big Data as well. To avoid overfitting, 
data miners ought to use parsimonious models and cross-validate their models on 
different data or subsets of their initial data. We discuss these methods throughout 
the book as examples of good practice.

Big Data further complicates a pair of issues that pose challenges in smaller datasets 
as well. The first is technically referred to as mixtures of relationships. In plain 
language, this refers to there not being one pattern in a set of data, but several 
possibly conflicting patterns. For instance, suppose a drug has a positive effect 
on men but a negative effect on women. An imprudent researcher might look for 
an effect of the drug and find zero effect, assuming about half of the data belongs 
to each gender. Here, a mixture of patterns mask each other. This challenge in 
data analysis is exacerbated by the large number of possible patterns in data that 
includes many variables and data that covers broad swaths of time, space, groups, 
and individuals. Identifying mixtures is often best done by exploring interactions 
between variables and by visualizing your data.

The second concern exacerbated by very large datasets is the recovery of findings that 
are statistically significant but substantively tiny. Many statistical techniques not only 
quantify relationships, say, between variables x and y, but also provide measures of 
the extent to which those relationships are unlikely to be zero. Relationships that are 
found to be unlikely to equal zero are said to be statistically significant. However, 
researchers should be aware of the fact that relationships can simultaneously be 
non-zero and trivially small. This is especially true in Big Data applications, because 
our ability to discriminate effect sizes from zero usually increases with data size. To 
avoid this pitfall, make sure to assess the substantive importance of any findings you 
generate, not just their statistical robustness. For instance, if you find an increase of 
2 percent in consumer sentiment related to your product, would this increase, even 
if statistically robust, be important? To whom and why? What if the effect size was 
estimated to be non-zero, still only at 1 or 0.5 percent?
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The modifiable areal unit problem (MAUP) is a source of statistical bias that comes 
in two flavors: scale and zonal problems. The issue was discovered by Gehlke and 
Biehl (1934) and described more completely by Robinson (1950) and Openshaw 
(1984), who lamented the following:

"The areal units (zonal objects) used in many geographical studies are arbitrary, 
modifiable, and subject to the whims and fancies of whoever is doing, or did,  
the aggregating."

Openshaw and Taylor (1979) described how they had constructed all possible 
groupings of counties in Iowa into larger districts. When considering the correlation 
between percent of Republican voters and percent of elderly voters, they could 
produce a million or so correlation coefficients. A set of 12 districts could be 
contrived to produce correlations that ranged from -0.97 to +0.99. The modifiable 
temporal unit problem is the temporal companion of MAUP, but instead of 
geographic aggregation, the problem relates to temporal aggregation. To avoid 
finding spurious relationships when aggregating data, try to aggregate to a natural 
or substantively meaningful unit. Additionally, try aggregating to several units of 
varying sizes to ensure the robustness of your results.

Another concern stems from how you choose what data to analyze. When you build 
your sample based on the value of the variable of interest (that is, the dependent 
variable), you bias your study in a way that leads to low or even zero explanatory 
power. A toy example helps illustrate that if you want to study the factors that lead 
to business success, and thus examine 50 successful businesses and find that all 50 
have CEOs that drive sports cars, you might conclude that this is a key cause of 
success. Obviously, such a study is flawed because of sampling of the dependent 
variable; to understand the causes of success, you would have to compare successful 
companies with unsuccessful ones. Though this seems obvious, even academic 
researchers fall victim to this error, such as the study of suicide terrorism done by 
Robert Pape (2003). Pape only looked at cases of suicide terrorism in an effort to make 
claims about the causes of suicide terrorism.

Self-selection is a constant concern in social science research. We must keep in mind 
that social data is volunteered by people, and that these people may not be indicative 
of the population generally. For instance, if we pull down geo-located Twitter data 
about President Obama, we must keep in mind that these tweets would almost 
entirely comprise users on Twitter (perhaps a young, upper-middle class group). 
This sample may not be representative of, say, likely US voters (whose modal 
member is older and middle class).
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When interpreting our findings, we need to be careful not to fall victim to the 
ecological fallacy—the incorrect assumption that facts about about a group apply 
equally to members of the group. For example, if a researcher finds that men are 
more aggressive drivers than women, this does not imply that all men are aggressive 
drivers. Conversely, finding no relationship between income and infant mortality at 
the county or state level does not mean that there is no relationship between these 
factors at the household level. Ecological fallacy ought to be considered a special 
case of MAUP. In general, we can avoid these fallacies by making inferences only for 
the level of data that we have—inferences about groups from group-level data and 
inferences about individuals from individual-level data. Even more concrete advice is 
to try and match the level of data you collect with your research question of interest. 
For example, if you are studying household-level economic decisions, then attempt  
to capture household data!

As Zeynep (2013) astutely noted, social media mining and sentiment analysis  
often hinge on a plus one additive property where polarity is counted as the 
cumulative frequency of positive and negative words. However, not all words  
have equal impact, and some words scale differently than others. Later in this book,  
we discuss an unsupervised method that outlines this scaling problem and offers  
a solution.

The final pitfall we warn against is to watch out for dissimilar denominators that 
lead to intrinsic heterogeneity. This issue affects researchers who attempt to compare 
the sizes of different phenomena when a better measure would be a phenomenon's 
rate. For instance, if one tweet is retweeted 50 times and another is retweeted 100 
times, upon first glance, we might be tempted to conclude that the second tweet was 
more interesting. However, what if the first tweet was only seen by a total of 100 
people, while the second was seen by 10,000 people? Then, we could more accurately 
say that the first had a 50 percent retweet rate, while the second only had a 1 percent 
retweet rate. While the example makes it clear that the way to avoid dissimilar 
denominators is to pay appropriate attention to them, it is not always easy to  
obtain the appropriate denominator for any given metric.
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Summary
Social data miners need to become more explicit in discussing, and where possible 
addressing, the pitfalls and assumptions that underpin their data and methods. 
Doing so will force researchers to be cautious and stay within appropriate inferential 
boundaries, while also allowing consumers of insights derived from social data 
mining to be aware of their limitations.

The upside of the model organism, Twitter, is that it provides a common, 
shared laboratory of interest that cannot be ignored by scientists, researchers, or 
practitioners; however, as was hopefully made clear in this chapter, harnessing it 
should be done with caution. Only through careful, thorough contemplation of the 
nature and structure of social data will mining provide us with answers to today's 
pressing social and human questions.

The last note we wish to make is that all data has shortcomings. Data is produced 
from an imperfect world, and we would therefore expect it to be imperfect. 
Regardless of whether your data is perceived to be from an authoritative source  
or not, one should still think in the terms outlined earlier. Measurement, reliability, 
validity, and potentials and pitfalls are pervasive considerations of data whether  
that data is small or big, good or bad, or traditional or nontraditional.





Social Media  
Mining – Fundamentals

Techniques used to extract sentiment from social media data are complex, at times 
counterintuitive, and often laden with assumptions. Before providing readers with 
a how-to guide to implement these models, we think it is critical to explain the 
techniques in depth so users can deploy them appropriately. This chapter explains 
the theoretical grounds for the techniques developed in the next chapter and serves 
as a bridge between the discussion of the pitfalls of social media mining and the 
execution of that mining.

Key concepts of social media mining
We find it useful to situate social media mining within the context of traditional 
social science research. While defining social science is difficult, Jean Anyon's 
perspective is a nice starting point. She suggests that socially explicit theory, and 
thus social science, should be empirically constructed, theoretically defensible, and 
socially critical. More generally, social science's main aims are to generate theories 
that explain individual-and group-level behaviors and then to examine the veracity 
of those theories with evidence. Generally, these theories are more valuable insofar 
as they allow a deeper understanding of human behavior, and especially so if they 
provide an understanding sufficient to allow for intervention. Our approach to social 
media mining strives to take this challenge to heart; thus, throughout this book,  
we use social media data to ask and answer questions of pressing social relevance.
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Traditional social science not only focuses on important questions, but also seeks 
to uncover relationships that are interesting and unexpected. The world around us 
is full of complex social behavior; though identifying mundane facts is sometimes 
helpful in the name of basic research, it does little to help us understand social 
behavior. We take to heart the mandate to find interesting relationships as we mine 
social media data—a particularly complex and rich source.

At heart, however, social science is not a focus on the important or the interesting. It is 
science, which means that it is a set of methods and practices designed to generate and 
verify facts. The logic of science, regardless of whether it proceeds quantitatively or in 
a qualitative fashion, is fundamentally about knowledge discovery and accumulation. 
This logic helps mitigate several shortcomings in reasoning that frequently hinder 
our ability to make correct inferences. Some examples include illusory correlations 
(perceiving correlations that do not exist), selective observation (inadvertently 
cherry-picking data), illogical reasoning, and over or under generalizing (assuming 
that facts discovered in one domain apply to others as well). Generally, the scientific 
process helps avoid the discovery of false truths often arrived at through deduction, 
speculation, justification, and groupthink.

Good data versus bad data
Traditional social science data differs markedly from social media data in several 
respects. First and foremost, traditional social science data is most often collected 
in targeted and rigorous ways. For instance, the US census targets nearly the entire 
US population and has a strong methodology for attaining this target. Researchers 
interested in the sentiments of particular demographics can target them specifically 
through surveys or polls, and can additionally tune survey instruments to carefully 
elicit the information they desire.

The steep downside to these classes of data sources is that they are often extremely 
limited in their geographic or temporal coverage. As such, they do not allow for 
broad generalizations or comparisons across place and time. Broader surveys, such 
as the US census, capture information about a large number of people, but usually 
only capture cursory descriptive information. Furthermore, this information is 
captured infrequently and in ways that are incomparable across borders. Narrower 
surveys, such as those fielded by researchers and firms, obviously are limited in their 
ability to support inferences about broad populations.
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These data sources, despite their shortcomings in terms of coverage, are held in high 
regard due to their focused and authoritative nature. These sources are used due to 
the fear that bad input data will yield low-quality inferences, or "garbage in, garbage 
out," as the saying goes. But, what is garbage data? Should we consider social media 
data garbage because of its unfocused nature? Also, under what circumstances might 
we be willing to use social media data?

Our view is that focused, purpose-collected data is the best option when it is 
available. This statement may come as a surprise in a book on social media  
mining, but the linchpin of the statement is the phrase when it is available. For the  
vast majority of emerging questions related to business, politics, and social life,  
purpose-collected social science data-sets simply do not exist. As such, we take  
the pragmatic position that social data, due to its broad coverage and large volume, 
makes a nice fallback to targeted data. Social data is bad in the sense that much of 
it will be inapplicable to any particular question; however, limited applicability is 
certainly better than utter absence of data. The reality is that we live in an imperfect 
world, which will consequently yield imperfect data. Our job, as data analyst is to 
work with data in responsible ways.

This book does not cover how to handle poor, dirty, missing, or incorrect data in  
a comprehensive manner. However, we do wish to promote the use of social media 
data and its utility in cases where traditional social science data-sets do and do not 
exist and where there are low and high barriers to targeted collection.

Traditional social science modeling techniques tend to require data-sets in which 
observations are independent of one another. However, data gleaned from social 
media outlets, such as Twitter, is almost certainly not independent. That is, data is 
not randomly sampled from a larger population and thus each observation is likely 
to be related to observations that are nearby in some sense. For example, tweets 
about a large public event arise around the same time and from the same area. Also, 
many may express similar views. This nonindependence has implications for how 
you handle tweets given their degree of centrality, shared geography, and repetition 
through retweets. Although we do not often study sentiment polarity explicitly in 
terms of networks, doing so may prove useful for future researchers. We anticipate 
research in that direction will produce better measures and predictions, localized 
lexicons, and other advantages.
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Understanding sentiments
Social media mining can and should have broad interpretation. It is not the intent of 
the authors to confine social media mining to sentiments or opinions, but rather we 
suggest that a sentiment or opinion is a useful tool for many research pursuits.

Until recently, sentiment was understood as a ubiquitous and constant part of the 
human experience, with variations in sentiments changing only slightly up or down. 
Klaus Scherer (2000) developed a working definition as follows:

"Emotions (sentiments) are episodes of coordinated changes in several components 
in response to external and internal events of major significance to the organism."

It is our intent to understand, measure, and interrelate these changes in a sentiment. 
Scherer's typology of emotions is a useful grounding point for the understanding of 
sentiments, and as a jumping-off point for a discussion of the difficulty in measuring 
sentiment-laden text.

Scherer's typology of emotions
Scherer's typology of emotions is briefly explained as follows:

• Emotion: This is a brief, organically synchronized evaluation of a major 
event, for example, being angry, sad, joyful, ashamed, proud, or elated

• Mood: This is a diffused, non-caused, low-intensity, long-duration change 
in subjective feeling, for example, being cheerful, gloomy, irritable, listless, 
depressed, or buoyant

• Interpersonal stance: This is an affective stance towards another person in 
a specific interaction, for example, being friendly, flirtatious, distant, cold, 
warm, supportive, or contemptuous

• Attitude: This is enduring, affectively colored beliefs or dispositions towards 
objects or persons, for example, being liking, loving, hating,  
valuing, or desiring

• Personality traits: These are stable personality dispositions and typical 
behavior tendencies, for example, being nervous, anxious, reckless, morose, 
hostile, or jealous

Generally, when we try to measure a sentiment, we talk about Scherer's emotions; 
though, in some situations, we might try to capture longer-term phenomena such  
as moods.
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Anchoring the neo-social science approach using Twitter data versus other types 
of social media data is important as well because not all data is equal. Twitter data 
differs from data derived from sites such as Yelp and Google Reviews due to the 
simple fact that Twitter does not have ratings or explicit targets. If we want to know 
the sentiment of a given source or topic, whether it is the iPhone 5S or something 
more sensitive such as social policy, we have to discover that signal in a corpus of 
other signals. However, Yelp and Google Reviews (just two examples of many) have 
explicitly accounted for the source or topic by design and have ratings designed  
to measure sentiments.

A tweet is what Twitter users send to each other and to the Twittersphere. A tweet 
is sometimes a sentence and other times not, but it is restricted to 140 characters 
or approximately 11 words. Twitter therefore provides sentence-level sentiment 
analysis as opposed to reviews on Yelp or Google Review, which usually constitute 
the entire documents.

Sentiment polarity – data and 
classification
Social media mining primarily involves the following two steps:

1. Identifying and retrieving content related to the topic of interest.
2. Measuring the polarity of each datum.

The first step, message retrieval, requires some a priori insight into the topic of 
interest. The goal of message retrieval is to seek out only the messages or pieces  
of text that contain sentiment-laden content related to a particular topic. This topic 
could be almost anything of interest, subject to the constraint that information exists 
about it on public social media. For instance, in Chapter 3, Mining Twitter with R, we 
examined the topic Big Data, and in Chapter 6, Social Media Mining – Case Studies,  
we delve into social issues such as abortion and the economy. Atmospherics, that is,  
data gathered in an effort to track local sentiments with regards to economic, 
cultural, or political topics, can also be analyzed, as we do in Chapter 6, Social Media  
Mining – Case Studies. Lest readers think that social media is too diffuse to be useful, 
as of the writing of this book, at least one hedge fund uses atmospherics gleaned 
from Twitter to gauge stock prices.
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To gather data, we generally collect content that contains a manually specified  
(set of) keyword(s). This is called the target. For example, the target for presidential 
approval would use the topic keyword obama. We may wish to add context to 
analyses done on particular keywords by adding additional opposing or specifying 
keywords. For example, in addition to obama, we could add romney to provide 
a counterpoint if we were studying the 2012 presidential election campaigns. 
Depending on the purpose of our analysis, we could jointly search for, say,  
obama and economy to target more specific subjects.

Topic models represent a second, more sophisticated, and potentially more thorough 
way of capturing bits of text that are relevant to a particular analysis. These models 
take very large sets of documents as their inputs and group them probabilistically 
into estimated topics. That is, each document is proclaimed to be a mixture of one 
or more topics that are themselves estimated from the data. This allows users to 
find texts that are related to a topic, though they may not explicitly use a particular 
keyword. The details of this class of statistical models are outside the scope of this 
text; however, in Appendix, Conclusions and Next Steps, we point readers to references 
on the theory and estimation of this exciting new class of tools.

Social data mining is the detection of attitudes, and the easiest way to understand  
it is through the following structure:

sentiment = {data source, source, target, sentiment, polarity}}

The parameters are explained in detail as follows:

• Data source: This relates to understanding the source of the data; that is, is 
the source a sentence or an entire document? Twitter or a blog?

• Source or holder: This is the one that expresses a sentiment or an opinion,
• Target or aspect: The target or aspect is what or to whom the sentiment is 

directed toward.
• Type of sentiment: This is the type(s) of emotion(s) expressed, that is, like, 

love, hate, value, desire, and so on.
• Polarity: These are juxtapositional sentiments on a dimension, that is, 

positive or negative.
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The following examples highlight these components and also some of the challenges 
involved in sentiment analysis. We have parts of two reviews: one about Steven 
Spielberg and another about John Carpenter. In both examples, the data source is the 
Internet Movie Database (IMDB) that considers itself the world's most popular and 
authoritative source for movie, TV, and celebrity content. The holder is the one who 
wrote the review, and the targets are Steven Spielberg and John Carpenter respectively. 
However, the target is complicated by mentions of various movies over time. Also, 
complicating matters is the variety of sentiment types and polarities.

Steven Spielberg's second epic film on World War II is an unquestioned 
masterpiece. Spielberg, ever the student on film, has managed to resurrect the war 
genre by producing one of its grittiest and most powerful entries. He also managed 
to cast this era's greatest answer to Jimmy Stewart, Tom Hanks, who delivers a 
performance that is nothing short of an astonishing miracle for about 160 out of its 
170 minutes; Saving Private Ryan is flawless, literally!

There was a time when John Carpenter was a great horror director. Of course, his 
best film was 1978's masterpiece Halloween; however, he also made The Fog in the 
1980s and 1987's underrated Prince of Darkness. Even, Heck made a good film, In 
the mouth of madness, in 1995. However, something terribly wrong happened to 
him in 1992 with the terrible comedy Memoirs of an Invisible Man.

Supervised social media  
mining – lexicon-based sentiment
Lexicon-based sentiment classification is perhaps the most basic technique for 
measuring the polarity of the sentiment of a group of documents (that is, a corpus). 
Lexicon-based sentiment measurement requires a dictionary of words (a lexicon) and 
each word's associated polarity score. For example, a lexicon may contain the word 
excellent, which might have a score of positive two. Similarly, the word crummy 
may score negative one and a half. In the simplest implementation of lexicon-based 
sentiment analysis, all of the words in a document are compared to the words in the 
lexicon. Every time a word is used that is in the lexicon, the associated score is added 
to that text's overall sentiment score. For example, the sentence "I found the customer 
assistance to be excellent," would score a positive two.
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A lexicon-based sentiment often entails merely counting the opinion words from  
a subset of data from a particular source. This approach certainly has errors,  
as does perhaps all natural language processing; however, in aggregate, the  
lexicon-based approach has proven to be fairly robust, even when only used on 
subsets. Additionally, there are many possible ways to aggregate the sentiment 
scores of each word, but most commonly, they are simply summed up to form  
an overall score for a document.

Despite lexicon-based sentiment classification being considered here as basic, it is 
still difficult. This is primarily due to the fact that when counting words with positive 
or negative valences, one must decide which words to count as each. Different 
dictionaries of positive and negative words can generate different sentiment scores 
for the same sentences. Some words with perceived sentiment are more neutral, 
while others have perceived neutrality, but are in fact more extreme. This challenge 
arises, in part, due to varied usages of words within and across contexts.

Preassembled lexicons are incredible resources and are applicable for a wide  
variety of problems—we use several in Chapter 6, Social Media Mining – Case  
Studies. Despite subtle differences, they are all good starting points, but they  
are just that, starting points and not end points. Rather than utilizing a preassembled 
lexicon indiscriminately, researchers should often develop lexicons that are sensitive 
to the domain they are analyzing. For instance, a lexicon that is useful for economic 
atmospherics (where moderate and stable are positive) may prove useless for 
examining political leanings. Preassembled domain-specific lexicons exist as  
well and two popular economic lexicons will be used later. There are many 
approaches to extending both generic preassembled lexicons as well as  
domain-specific preassembled lexicons, and we will describe two rather intuitive 
ones, dictionary-based lexicons, and corpus-based lexicons in addition to 
preassembled lexicons.

Both dictionary-based and corpus-based approaches augment preassembled lexicons 
in one of the following two ways:

• Using a dictionary (that is, synonyms and antonyms) to add keywords 
external to our corpus to enhance our preassembled lexicon(s)

• Using the corpus directly to add words already internal to our corpus  
that are keywords but are not accounted for by preassembled lexicons

Merging preassembled lexicons, dictionary-based lexicons, and corpus-based 
lexicons offers the best chance to successfully estimate sentiment.
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The two approaches (dictionary and corpus) produce empirically constructed 
lexicons that seek to calibrate the underlying sentiment by adding to the 
preassembled lexicons. The intuition is words appearing in the complete collection 
of lexicons (preassembled, dictionary, and corpus) within our set of documents 
returned from a narrow topic (the search set) are more likely to objectively describe 
sentiment information. In the lexicon approach, it is sufficient to simply count the 
frequency of words from our lexicons with the set of documents returned from our 
topic of interest and sum the results over time, by space or by product. The next 
chapter outlines this process in detail and sums the results' set over time where the 
target is the US economy.

Supervised social media mining – Naive 
Bayes classifiers
Methods to extract sentiments from documents can be broadly classified into 
supervised and unsupervised approaches (semisupervised approaches are also 
available but are outside the scope of this text. Interested readers can consult Abney 
(2007)). Supervised methods are those that utilize data that has been tagged or 
labeled. In the parlance of statistics, these approaches utilize observations with both 
independent and dependent variables. For instance, the following Naive Bayes 
classifier approach involves a training dataset of documents that have already been 
scored as having positive or negative sentiment; a statistical model based on these 
forms the basis of scoring further documents. In contrast, unsupervised learning 
algorithms do not require a dependent variable to be provided. For instance,  
the IRT-based method described later in this chapter scales documents along  
a continuum of sentiments with no need to provide a labeled training set.  
Additionally, lexicon-based approaches mentioned earlier can also function  
without prelabeled observations.

The Naive Bayes classifier, in spite of its unfortunate name, turns out to be a highly 
useful tool for sentiment analysis. At the most general level, the Naive Bayes 
classifier is exactly that: a classifier. Classifiers are statistical tools that are used for, 
among other things, predicting which of two or more classes a new observation 
belongs to. In our case, we want to train our classifier to be able to distinguish 
documents featuring positive sentiment from those featuring negative sentiment 
(the two types or classes of interest). To do so, we feed the algorithm a large set of 
documents that are already coded as containing positive or negative sentiments 
about a particular topic. Then, if all goes as planned, we can pass new documents to 
the model and have it predict the direction of their sentiment, or valence, for us. The 
downside to this and other supervised techniques is having to handcode a sufficient 
set of initial training data.
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So, where did the naive part of the name come from, and why is this method useful 
in spite of its self-assumed simplicity? The goal of any classifier is to determine 
which class or type a new observation belongs to based on its characteristics and 
previous examples from both types that we have seen before (that is, from existing 
data). Some types of classifiers can account for the fact that the characteristics we 
use for this prediction may be correlated. That is, if we are trying to predict whether 
an e-mail is spam or not by looking at what words and phrases the e-mail contains, 
the words easy and money are likely to co-occur (and are likely to be indicative of 
spam messages). The Naive Bayes classifier does not try to account for correlations 
between characteristics. It just uses each characteristic separately to try to determine 
each new observation's class membership.

The naive assumption that all of the characteristics of an observation are unrelated  
is always wrong. In predicting whether or not to extend a loan to an individual,  
a bank may look at their credit score, whether or not they own a home, their income, 
and their current debt level. Obviously, all of these things are likely to be correlated. 
However, ignoring the correlations between predictive characteristics allows us to do 
two things that would otherwise be problematic. First, it allows us to include a huge 
number of characteristics, which becomes important. This is because in text analysis, 
individual words often have predictive characteristics, and documents often contain 
thousands of unique words. Other models have a difficult time accommodating this 
number of predictors. Secondly, the Naive Bayes classifier is fast, thus allowing us to 
use large training sets to train a model and to generate results quickly.

Unsupervised social media mining – Item 
Response Theory for text scaling
The techniques set out earlier for scaling or classifying sentiments in texts are fairly 
robust; that is, they tend to work well under a wide variety of conditions such as 
heterogeneous text lengths and topic breadths. However, each of these methods 
requires substantial analyst input, such as labeling training data or creating a lexicon. 
Item Response Theory (IRT) is a theory, but will be used in this text to refer to  
a class of statistical models that rely on that theory, providing a way to scale texts 
according to sentiment in the absence of labeled training data. That is, IRT models 
are unsupervised learning models.
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IRT models were developed by psychologists for scoring complex tests and were 
then picked up by political scientists who employ them for scaling legislators. We 
will briefly explain the legislative context as that will help readers build intuition over 
how models work when applied to scaling texts. Consider a set of V voters, such as 
US Senators, who, over the course of a year, vote on B bills. For simplicity, assume 
each voter can only vote yes or no. We could then put all of the data into a matrix, 
where each row represents a voter and each column a bill. Each cell then represents 
a particular voter's decision on a particular bill, that is, yes (1) or no (0). Now, we 
need to make two related assumptions. The first is that all or most of these voters can 
be described as lying along a single underlying continuum. The second more trivial 
assumption is that this position influences their votes, at least on some bills. With these 
assumptions in place, we can estimate a statistical model that describes the probability 
of each cell in our data matrix being a one or a zero. The model is a function of each 
bill's difficulty of being voted for (that is, how controversial it is), each voter's position 
on the underlying scale, and how strongly each bill is affected by voters' locations on 
the scale. Technically, we estimate a logistic regression as follows:

pr(yvb=1) = logit(b1b*xv - b0b)

Here, x is the scaled position of each voter (v), b0 is the difficulty of voting yes for 
each bill (b), and b1 is the degree to which each voter's position affects their proclivity 
to vote in favor of each bill (b). Positive values of b1 mean that voters to the right are 
more likely to vote in favor of a bill, and negative values of b1 mean that senators to 
the left are more likely to vote for a bill.

As you will see, we apply the previous assumption to the analogous case of text 
scaling. To do so, we create a matrix with rows representing authors or documents 
(instead of voters) and columns representing words or phrases, (instead of bills). 
Each cell represents whether or not a particular author used a particular word 
or phrase. We modify the previous assumptions: authors lie along a sentiment 
continuum, and their placement affects their pattern of word use. The first part of 
this assumption is limiting. We can only apply the method to sets of documents that 
are sufficiently narrow to be usefully described by a single underlying continuum, 
and that continuum must essentially be the sentiment we are trying to measure.  
The results of this analysis are a continuous scaled measure of author (or document) 
location (x) as well as estimates of the weights for each word or phrase (b1).  
This scaled measure of location (x) represents the author's sentiment towards  
the topic under study if the previous assumptions are met.
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The IRT-based method described here has mixed properties. It requires no training 
data, little subject matter expertise to employ, is language agnostic (that is, could 
function on any language), and generates a quantitative (instead of merely a binary) 
measure of a sentiment. However, this model can only be applied to documents that 
are all about the same topic, can only estimate a single underlying dimension, can be 
slow to estimate, and is not guaranteed to converge.

Summary
In this chapter, we learned key concepts related to sentiment analysis. Sentiment was 
defined and difficulties related to its mining were covered. We then walked through 
the theoretical underpinnings of three different models for sentiment analysis. We 
intentionally separated the details of implementation from theoretical concerns in 
hopes of giving readers an appreciation for the methods, including their strengths 
and weaknesses.

The next chapter delves into the details of implementing the classes of models 
described earlier.



Social Media Mining – Case 
Studies

The importance of examples cannot be downplayed as they help us to understand 
and enhanced understanding often leads to subsequent improvement of our skills. 
While this chapter represents a sizable minority of the overall book, it also represents 
the proportion of time spent during modeling, that is, only a sizable minority. 
The previous chapters have established a solid groundwork of key concepts and 
foundational knowledge such that readers can now responsibly digest, comprehend, 
and execute the case studies discussed in this chapter. This pivotal chapter provides 
accessible material and tangible examples, including lexicon-based, supervised, and 
unsupervised approaches to sentiment analysis.

Introductory considerations
As promoted often throughout this book, social data mining can be about more 
than mere product reviews. This is not to suggest that these methods are used 
exclusively for marketing or business, nor that using these methods for such analyses 
is unimportant. It is merely an acknowledgment that our goals are largely about 
investigating socially critical issues, such as abortion, gun control, and immigration, 
or parts of issues broadly set within the health, economic, and political categories. 
These are perspectives that remain intrinsically important to the human condition 
and societal progress. To that end, we have intentionally chosen topics that are 
hard-hitting. Also, while we promote social media data, specifically Twitter, we also 
find utility in these methods on varied datasets, both big and small. Consequently, 
examples include data from the Web that is not from Twitter, and we simultaneously 
highlight nuances to consider when working with varied datasets. Furthermore, 
social data mining is often about Big Data, and R does a good job with large datasets, 
but size can become a consideration when working with real-world datasets.
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When working with larger files, in general, you should consider the following:

• How large is your dataset?
Generally, the number of rows and columns is a good estimation given the 
content in each cell, that is, numeric versus character.

• How much memory does your system have?
You may want to avoid reading in data with file sizes greater than the 
memory available to you. As a rule of thumb, the overhead associated with 
reading data to memory, which is the default behavior of R, is about double. 
Therefore, if you estimate your data to be 3 GB, then the memory required is 
roughly 6 GB. Most computers now have 8 GB and even 16 GB of RAM, but 
if you do not have enough system memory, then some social media mining 
applications may be intractable.

• How many open applications do you have, and what are they?
If you think you will be broaching the limits of your system, then you may 
want to consider closing applications or reading your data into memory  
at a later time.

• What is your operating system? Is it 32-bit or 64-bit?

Some operating systems are more efficient, and having a 64-bit machine  
will allow increased access to memory.

We suggest you read the help page for read.table and read.csv; both offer simple 
mechanisms to gracefully handle larger datasets. colClasses is another option that 
should be considered. This option takes a vector whose length is equal to the number 
of columns in your table. By specifying this option instead of using the default we 
can tune R to load much faster since R will know in advance what the columns are 
and know their class. Also, by specifying the nrows argument we tune the internal 
memory usage. When R doesn't know how many rows it has to read it makes some 
rather crass estimations, and when it underestimates the memory demands, it 
allocates more memory. The constant allocations take time, and if R overestimates 
the amount of memory it needs, your computer will run out of memory. Even a mild 
overestimate for nrows is better than none at all.
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Case study 1 – supervised social media 
mining – lexicon-based sentiment
The Beige Book (http://www.federalreserve.gov/monetarypolicy/beigebook), 
more formally called the Summary of Commentary on Current Economic Conditions, is 
a report published by the United States (US) Federal Research Board (FRB) eight 
times a year. The report is published by each of the Federal Reserve Bank districts 
ahead of the Federal Open Market Committee meeting and is designed to reflect 
economic conditions. Despite being a report published by the US FRB, the content 
is rather anecdotal. The report interviews key business contacts, economists, market 
experts, and others to get their opinion about the economy.

The Beige Book has been in publication since 1985 and is now published online. 
The data used in this book can be found on GitHub (https://github.com/
SocialMediaMininginR/beigebook), as well as the Python code for all the scraping 
and parsing.

An example from the full report of the Beige Book (October 2013) is shown as follows, 
which will give you some idea about the nature of the content. The full report is an 
aggregated view from the 12 Federal Reserve Bank districts:

Consumer spending grew modestly in most Districts. Auto sales continued 
to be strong, particularly in the New York District where they were said to be 
increasingly robust. In contrast, Chicago, Kansas City, and Dallas indicated slower 
growth in auto sales in September.

The Beige Book differs from Twitter in numerous ways: not everyone has the freedom 
to participate, the data points are not socially linked, and users cannot respond to 
one another directly. For our purposes, however, the most important difference is 
that the Beige Book contains paragraphs of information per document rather than 
being a collection of single sentences as is the case with Twitter.

For simplicity, the data has been collapsed over space. Other versions of the data 
include longer temporal ranges of the data and can be found on the authors' GitHub 
account (https://github.com/SocialMediaMininginR/beigebook). These datasets 
include disaggregated geographic views of reports by city and disaggregated views by 
topic. As the earlier quote (October 2013) indicates, and as intuition may suggest, the 
economic conditions in the US are nonstationary; that is, regional variation exists due 
to economic shocks affecting cities and regions that are similar either geographically  
or functionally. A more robust analysis of the data might include sentiment analysis 
by city and include neighborhood effects—we simplify the analysis here for expository 
purposes by omitting these complicating factors.
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As we discussed in the previous chapter, a necessary requirement of lexicon-based 
approaches to measuring sentiment is to procure lexicons against which our data 
needs to be tested. There are many extant dictionaries that vary in terms of how  
they were generated (manually versus empirically) and their breadth (general 
or subject-specific). We use two preassembled lexicons and augment each with 
additions, one empirically induced from the corpus and the other dictionary-based. 
Our general opinion lexicon was created by Hu and Liu (http://www.cs.uic.
edu/~liub/FBS/sentiment-analysis.html), and our domain-specific lexicon  
was created by Tim Loughran and Bill McDonald (http://www3.nd.edu/~mcdonald/
Word_Lists.html). While one is domain-specific (Loughran and McDonald)  
and the other is for more general use (Hu and Lui), both lexicons offer broad  
utility for textual analysis, natural language processing, information retrieval,  
and computational linguistics.

Let's start by loading our data, sentiment function, and lexicons. The https_
function, located on the authors' GitHub account (https://github.com/
SocialMediaMininginR/https_function/blob/master/https_function.R), 
will load R files directly into your R session over HTTPS. This allows us to centrally 
store code and data and to make it available in a simple, verbatim manner. The code 
present on GitHub is shown as follows:

# Run the following code - (Breyal)
https_function <- function(url, ...) {
  # load package
  require(RCurl)
  
  # parse and evaluate each .R script
  sapply(c(url, ...), function(u) {
    eval(parse(text = getURL(u, followlocation = TRUE,
    cainfo = system.file("CurlSSL", "cacert.pem",
    package = "RCurl"))), envir = .GlobalEnv)
  })
}

It should be noted that when performing this analysis, several tabs were used in 
RStudio. If you are using RStudio for the first time, you may want to consider how  
to make best use of the tabs for general organization. The following R code will 
appear to be all in one block, but in practice, the material was organized in three 
tabs in RStudio: one labeled environment that loaded packages and set working 
directories, a second tab that loaded the data named load (the labeling should be 
simple and sensible to you), and a third tab for analysis, which, as you may have 
guessed, is where most of the work was done. You can imagine extra tabs for data 
cleaning/munging code, another for visualization code, and maybe others. It is 
probably a bad idea to go beyond four or five tabs as the management of the tabs 
alone then becomes more of a task than what they are attempting to alleviate.
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In the next section, we will pull in data from GitHub. In the event that you have 
trouble, we encourage you to go directly to GitHub and download the  
data (https://github.com/SocialMediaMininginR):

1. Load the sentiment function located at https://github.com/
SocialMediaMininginR.

2. Load https_function located at https://raw2.github.com/
SocialMediaMininginR/sentiment_function/master/sentiment.R.

The sentiment function is based on the approach of Jeffrey Breen. Some of his material 
is available on his blog at http://jeffreybreen.wordpress.com/2011/07/04/
twitter-text-mining-r-slides/, and his complete code is available on GitHub 
at https://github.com/jeffreybreen/twitter-sentiment-analysis-
tutorial-201107.

The qdap package in R has a polarity function based on the work of Jeffery Breen. 
Its goal is quantitative discourse analysis of transcripts containing discourse. The 
analysis in this first case study is designed to capture discourse by matching and 
then counting opinionated words based on our lexicons. The counting occurs by 
whole numbers and does not represent a scale. The qdap package ranks sentiment 
from -1 to 1, akin to text scaling of sorts. Breen's original work is used in the first 
case study over the qdap package since we promote a non-dictionary-based, 
unsupervised text scaling method in the third case study.

In the first case study, we are interested in determining economic conditions over 
time. The example captures opinions of experts and local businesses eight times a 
year. Sentiment analysis will give us insight into the strength and direction of those 
opinions. Again, to measure the opinions, we need lexicons to match against. Exactly 
which lexicon you choose to employ may have a direct impact on the analysis of 
opinionated text, so choose wisely and understand the lexicon landscape. As a rule 
of thumb, start with general preassembled lexicons; proceed to domain-specific 
preassembled lexicons; and lastly, advance to empirically constructed lexicons.

Next, we load our lexicons directly from GitHub as follows:

# Download positive lexicons from the Social Media Mining Github 
account
# note: you will substitute your directory for destination file 
locations
# On Windows machines you may have to disregard the method argument 
> download.file("https://raw2.github.com/SocialMediaMininginR/neg_
words/master/negative-words.txt", destfile = "/your-localdirectory/
neg_words.txt", method = "curl")
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> download.file("https://raw.github.com/
SocialMediaMininginR/pos_words/master/      LoughranMcDonald_pos.csv", 
destfile = "/
your-localdirectory/        LoughranMcDonald_pos.txt",
 method = "curl")

# import positive lexicons from your local directory defined in 
earlier step
> pos<- scan(file.path("your-localdirectory",
 'pos_words.txt'), what = 'character', 
  comment.char = ';')

# import financial positive lexicon from your local directory defined 
in earlier step
> pos_finance<- scan(file.path("your-localdirectory", 
'LoughranMcDonald_pos.txt'), 
  what = 'character', comment.char = ';')

# combine both files into one
> pos_all<- c(pos, pos_finance)

# Download negative lexicons from Social Media Mining Github account
# note: you will substitute your directory for destination file 
locations
# On Windows machines you may have to disregard the method argument > 
download.file("https://raw2.github.com/SocialMediaMininginR/neg_words/
master/negative-words.txt", destfile = "/your-localdirectory/pos_
words.txt", method = "curl")

> download.file("https://raw.github.com/
SocialMediaMininginR/neg_words/master/LoughranMcDonald_neg.csv", 
destfile = "/your-localdirectory/LoughranMcDonald_neg.txt", method = 
"curl")

# import negative lexicons from your local directory defined in 
earlier step
> neg<- scan(file.path("/your-localdirectory/
", 'neg_words.txt'), 
what = 'character',       comment.char = ';')

# import financial negative lexicon from your local directory defined 
in earlier step
> neg_finance<- scan(file.path("/your-localdirectory/",
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'LoughranMcDonald_neg.txt'), 
  what = 'character', comment.char = ';')
# combine both files into one
> neg_all<- c(neg, neg_finance)

# Import Beige Book data from Github and create a new data frame.
# *Important* You have three options when ingesting Beige Book data.
  # beigebook_summary.csv is three years of data (2011 - 2013) 
  # bb_full.csv is sixteen years of data (1996 - 2011) 
  # BB_96_2013.csv is eighteen years of data (1996 - 2013)
# The example below uses beigebook_summary and bb_full
   # Feel free to ingest what you wish or try all three
   # Outputs will look different depending on the file you chose
> download.file("https://raw.github.com/
SocialMediaMininginR/beigebook/master/beigebook_summary.csv", destfile 
= "/
your-localdirectory/BB.csv", method = "curl")

> BB <- read.csv("/your-localdirectory/BB.csv")

We now have data (Beige Book) and both of the lexicons, general and domain-specific, 
loaded into our R session as well as our sentiment function. Thus, we can begin some 
exploratory analysis to better understand the data. By using colnames on our data.
frame (BB), we identify the column names of BB. Other operations too give us a 
more complete examination of the Beige Book, such as class(BB), str(BB), dim(BB), 
and head(BB). An example of using colnames is shown as follows:

> colnames(BB)
[1] "year""month""text"

We can also check for missing data (year ~ month) using Hadley Wickham's reshape 
package. We can see that there seems to be some systematic missing data, notably 
that May (5) and December (12) are missing data in all three years of data collection 
as shown in the following example:

> cast(BB, year ~ month, length)

year   1 2 3 4 6 7 8 9 10 11
1 2011 1 0 1 1 1 1 0 1  1  1
2 2012 1 1 0 1 1 1 1 0  1  1
3 2013 1 0 1 1 1 1 0 0  0  0
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In the real world, data analysis is dirty. Consequently, most of your time will be 
spent on cleaning the data. Identifying missing data is central to that pursuit.  
The is.na() function in R helps identify missing data. Regular expressions too  
are pretty handy and aid in pattern matching by finding and replacing data. If you 
are unfamiliar with regular expressions, we suggest that you learn more; RegexOne 
has a great regular expression tutorial (www.regexone.com), and Debuggex Beta 
has a helpful debugger (https://www.debuggex.com/). An example of regular 
expressions is given as follows:

> bad <- is.na(BB)   
# create a new object "bad" that will hold missing data, in this case 
from BB.
> BB[bad]     
# return all missing elements

character(0)     
# returns zero missing elements. Alternately, adding !before "bad"        
# will return all good elements.

# regular expressions help us clean our data
# gsub is a function of the R package grep and replaces content that 
matches our search
# gsub substitutes punctuation (must be surrounded by another set of 
square brackets) 
# when used in a regular expression with a space â€˜ â€˜
> BB$text<- gsub('[[:punct:]]', ' ', BB$text)  
# gsub substitutes character classes that do not give an output such 
as feed, backspace and tabspaces with a space ' '.
> BB$text<- gsub('[[:cntrl:]]', ' ', BB$text)
# gsub substitutes numerical values with digits of one or greater with 
a space ' '.
> BB$text<- gsub('\\d+', ' ', BB$text)
# we are going to simplify our data frame and keep the clean text as 
well as keep both 
# year and a concatenated version of year/ month/day and will format 
the latter.
> BB.text <- as.data.frame(BB$text)
> BB.text$year<- BB$year
> BB.text$Date <- as.Date( paste(BB$year, BB$month, BB$day, sep = "-" 
)  , format =   "%Y-%m-%d" )
> BB.text$Date <- strptime(as.character(BB.text$Date), "%Y-%m-%d")
> colnames(BB.text) <- c("text", "year", "date")
> colnames(BB.text)
[1] "text" "year" "date"
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To perform a more complete exploration and refine our analysis, we may also 
create a corpus via VectorSource, which is present in the tm package. It is quite 
useful and can create a corpus from a character vector. A corpus is a collection of 
text documents. Our goal here is to revisit our data frame to perform our sentiment 
analysis, but in the meantime we require a more comprehensive understanding of 
our data, especially to augment our lexicons. In order to do so, we will work with 
our data as a corpus and term-document matrix using the tm package.

For example, we can create a corpus by combining two character strings into the 
example_docs object and convert it using VectorSource into a corpus as follows:

example_docs<- c("this is an useful example", "augmented by another 
useful example")
> example_docs
[1] "this is an useful example""augmented by another useful example"

> class(example_docs)
[1] "character"

> example_corpus<- Corpus(VectorSource(example_docs))
> example_corpus
A corpus with 2 text documents

We can perform much of the same cleaning of the data using the tm package, but our 
data then needs to be in a corpus, whereas regular expressions work on character 
vectors as shown in the following code:

> install.packages("tm")
> require(tm)
> bb_corpus<- Corpus(VectorSource(BB.text))
# tm_map allows transformation to a corpora.
# getTransformations() shows us what transformations are available via 
the tm_map function
> getTransformations()
  "as.PlainTextDocument" "removeNumbers"        "removePunctuation"      
"removeWords"          "stemDocument" "stripWhitespace"  
> bb_corpus<- tm_map(bb_corpus, tolower)
> View(inspect(bb_corpus))

# before cleaning:
"The manufacturing sector continued to recover across all Districts." 
(2011,1)
# after cleaning: 
"the manufacturing sector continued to recover across all districts" 
(2011,1)
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Stemming is rather useful for reducing words down to their core element or stem, 
as we show in the Naive Bayes and IRT examples. An example of stemming for the 
words stemming and stems would be stem—effectively dropping the -ing and -s 
suffixes, as shown in the following code:

   # stemming can be done easily
   # we just need the SnowballC package
   > install.packages("SnowballC")
   > require(SnowballC)
   > bb.text_stm<- tm_map(bb_corpus, stemDocument)

When exploring our corpus, it is often important to accentuate the signal and 
reduce noise. We can accomplish this by removing frequently used words (such 
as the) commonly known as stop words. These commonly used words often have 
information value at or very close to zero.

We will use a standard list of stop words and augment this further with words 
specific to our corpus. The list of stop words started with a simple list generated  
by reading a few of the reports, but was expanded based on some text mining 
explained later. Again, the goal is eliminating words that lack discriminatory  
power. The cause for eliminating city names is due to their frequency of use  
as shown in the following example:

# Standard stopwords such as the "SMART" list can be found in the tm 
package.
> stnd.stopwords<- stopwords("SMART")
> head(stnd.stopwords)
> length(stnd.stopwords)
[1] 571

# the standard stopwords are useful starting points but we may want to
# add corpus-specific words
# the words below have been added as a consequence of exploring BB
# from subsequent steps
> bb.stopwords<- c(stnd.stopwords, "district", "districts", 
"reported", "noted", "city", "cited",   "activity", "contacts", 
"chicago", "dallas", "kansas", "san", "richmond", "francisco",   
"cleveland", "atlanta", "sales", "boston", "york", "philadelphia", 
"minneapolis", "louis",   "services","year", "levels", " louis")

The bb.stopwords list is a combination of stnd.stopwords and our custom list 
discussed earlier. You can certainly imagine another scenario where these city names 
are kept and words associated with city names are examined. For the following 
analysis, however, they were dropped:
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> length(bb.stopwords)
[1] 596

# additional cleaning to eliminate words that lack discriminatory 
power. 
# bb.tf will be used as a control for the creation of our term-
document matrix.
> bb.tf <- list(weighting = weightTf, stopwords  = bb.stopwords,
  removePunctuation = TRUE,
  tolower = TRUE,
  minWordLength = 4,
  removeNumbers = TRUE)

A common approach in text mining is to create a term-document matrix from a 
corpus. In the tm package, the TermDocumentMatrix and DocumentTermMatrix 
classes (depending on whether you want terms as rows and documents as columns, 
or vice versa) employ sparse matrices for corpora as shown in the following code:

# create a term-document matrix
> bb_tdm<- TermDocumentMatrix(bb_corpus, control = bb.tf)

> dim(bb_tdm)
[1] 1515   21
> bb_tdm
  A term-document matrix (1515 terms, 21 documents)

  Non-/sparse entries: 5441/26374
  Sparsity           : 83%
  Maximal term length: 18 
  Weighting: term frequency (tf)

> class(bb_tdm)
[1] "TermDocumentMatrix""simple_triplet_matrix"

# We can get all terms n = 1515
> Terms(bb_tdm)

A good exploratory step to get a handle on your dataset is sorting frequent words.  
This helps to first remove stop words that lack discriminatory power as a 
consequence of their repeated use.

> bb.frequent<- sort(rowSums(as.matrix(bb_tdm)), decreasing = TRUE)

# sum of frequent words
> sum(bb.frequent)
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[1] 8948

# further exploratory data analysis
> bb.frequent[1:30]
  # BEFORE removing stopwords
  chicago        demand        dallaskansas           san 
  248              245               244           236                
220 
  richmond francisco         sales     cleveland atlanta
  218              217                  210       201                
198 
  boston york philadelphia minneapolis louis
  186              185     173                154                      
140 
  increased        growth      services    conditions        prices 
  133                108            101            98                    
92 
  mixed     continued        strong          home      manufacturing 
  87            84                  71                68            68 
  loan        steady         firms       construction      remained 
  66            65              64            61                      
61 

> bb.frequent[1:30]
  # AFTER removing stopwords
  demand     increased        growth    conditions        prices         
mixed 
  252            133                110           102                  
94               88 
  continued        strong          loan        manufacturing       
reports          home 
  85                   72                 70            69                         
69                68 
  steady     construction         firms        report      remained      
consumer 
  67            66                        65             64            
61                 58 
  increases        hiring      increase    production   residential        
retail 
  58                  57            57             57                 
56                   56 

The word demand is a prominent noun, as are growth, conditions, and prices. 
Prominent adjectives include mixed, strong, and steady, while prominent 
verbs include increased, continued, remained, and hiring. It is too soon to 
determine the general direction of opinion relating to the economy based on this 
decontextualized information, but it does help us determine the nature of our corpus.
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Finding the most frequent words (for example, n, where n is the minimum 
frequency) will help us build out our positive and negative library of words in order 
to refine our analyses and learn more about our corpus. This is the lexicon approach. 
A word such as strong would appear to be a good predictor of positive sentiment. 
Exploring the corpus itself can allow our lexicon to grow inductively, allowing us 
to augment our domain-specific dictionary or build one from a general purpose 
dictionary. The any function returns logical vectors if at least one of the values is 
true. Using the results from the frequent words, we can begin to test for the presence 
of words from within our corpus and our lexicons as follows:

# look at terms with a minimum frequency
> findFreqTerms(bb_tdm, lowfreq = 60)
  [1] "conditions""construction""continued""demand""firms"
  [6] "growth""home""increased""loan""manufacturing"
  [11] "mixed""prices""remained""report""reports"
  [16] "steady""strong"

Additionally, we could augment this even further by using a dictionary  
(for example, http://www.merriam-webster.com) to find words to add to our 
lexicon. The Thesaurus website is a good choice as it gives many relevant matches 
(http://thesaurus.com/browse/increase) and suggests hike, development, 
expansion, raise, and surge. These words may be useful. Also useful are their 
antonyms, which may be used in our negative lexicon. Words such as decrease,  
drop, shrinkage, and reduction may all prove to be helpful—none of which were 
included in the default lexicons nor in our manual additions to them. An example  
of using positive and negative words is shown as follows:

# Let us add some of these positive words:
> pos.words<- c(pos_all, "spend", "buy", "earn", "hike", "increase", 
"increases",   "development", "expansion", "raise", "surge", "add", 
"added", "advanced", "advances",   "boom", "boosted", "boosting", 
"waxed",  "upbeat", "surge")

# And add the negative ones:
> neg.words = c(neg_all, "earn", "shortfall", "weak", "fell", 
"decreases", "decreases",   "decreased", "contraction", "cutback", 
"cuts", "drop", "shrinkage", "reduction",   "abated", "cautious", 
"caution", "damped", "waned", "undermine", "unfavorable",   "soft", 
"softening", "soften", "softer", "sluggish", "slowed", "slowdown", 
"slower",   "recession")  
> any(pos.words == "strong")
[1] TRUE  
# TRUE is returned. Meaning, "strong" is already in our lexicon.
> any(pos.words == "increases")
[1] FALSE
# FALSE is returned.
# Meaning, "increases" is not already in our lexicon.
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The word "increases" is not in our lexicon. The implications about the economy and 
its direction make this word potentially useful. Certainly, it could be associated 
with increases in unemployment; however, after reading a couple of the mentions 
of "increases", it seems a better predictor of positive sentiment. It seems the Federal 
Bank uses "decreases" to suggest negative direction.

We may want to find associations (that is, terms with correlations greater than 0.5) 
or correlations with various keywords, such as demand. This exploratory process  
can be used to augment our dictionary and also the contextualized local relationships 
of our data. We can get a general sense about the interaction between nouns (n)  
and verbs (v), such as the interaction between demand (n) and hiring (v) as well  
as material (n) and building (v) in the following example:

# interestingly, demand is associated with "weak"
> findAssocs(bb_tdm, "demand", 0.5)
  makers        season      products          weak          wood         
years 
  0.73             0.69          0.65               0.64             
0.63          0.63 
  livestock      category       pointed      december    electronic       
feeding 
  0.62              0.60             0.60           0.59             
0.59               0.59 
  november         power          snow    consistent      exceeded 
manufacturers 
  0.59                  0.59             0.59          0.57          
0.57          0.57 

# "increased" is associated with "materials", "hiring" and "building"
> findAssocs(bb_tdm, "increased", 0.5)
  availability    materials    corporate      finding    qualified       
hiring 
  0.75                0.75             0.68              0.65         
0.65         0.63 
  selective       yields    purchases     building      dealers         
side 
  0.58              0.56         0.55             0.54            0.54            
0.51 

# "growth" is associated with "slowdown" and "reductions"
> findAssocs(bb_tdm, "growth", 0.5)
  slowdownipo     reductions        capital         driven 
  0.63                   0.59           0.59            0.55               
0.55 
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  inputs semiconductors       supplier    contributed         months 
  0.55           0.55                   0.55            0.54               
0.54 
  restrained            tax 
  0.54                  0.52 

Another potential step in our exploration of the data is to make a word cloud, which 
is a graphic that depicts common words in a corpus by displaying their relative 
frequencies as relative sizes. Word clouds give a sense of diction within our corpus. 
We utilize the wordcloud function from the wordcloud package to generate the 
useful graphic that is shown after the following code:

# Remove sparse terms from term document matrix with
# a numeric value of .95; representing the maximal allowed sparsity.
> BB.95 <- removeSparseTerms(bb_tdm, .95)

# Here we are sorting and counting the row sums of BB.95
> BB.rsums <- sort(rowSums(as.matrix(BB.95)), decreasing=TRUE)

# We will need to create a data frame with the words and their 
frequencies.
> BBdf.rsums <- data.frame(word=names(BB.rsums), freq=BB.rsums)
> colnames(BBdf.rsums)
# [1] "word" "freq"

# Install RColorBrewer for coloring our wordcloud
> install.packages("RColorBrewer")
> require(RColorBrewer)

# RColorBrewer creates nice looking color palettes 
# Create a palette, blue to green, and name it palette using brewer.
pal
> palette <- brewer.pal(9, "BuGn")
> palette <- palette[-(1:2)]
> install.packages("wordcloud")
> require(wordcloud)

# Create a png and define where it will be saved and named
> png(filename="your/file/location/name.png")
# Create a wordcloud and define the words and their frequencies as 
well as how those word sizes will scale.
> bb_wordcloud <- wordcloud(BBdf.rsums$word, BBdf.rsums$freq,  
> scale=c(7,.2), min.freq=4, max.words=200, 
  random.order=FALSE, colors=palette)
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# dev.off will complete the plot and save the png
> dev.off()

Word cloud

As you can see in the previous screenshot, demand and prices are central. Within  
the field of economics, demand has a nuanced and important meaning. Demand 
offers insight into the willingness to buy goods or a service.

You can imagine businesses and government alike spending a great deal of effort 
trying to understand the quantum of demand that exists within the public sector. 
Understanding this incorrectly or incompletely will result in incorrectly estimating 
the impact of government programs or, from a private sector perspective, will result 
in the loss of money or unrealized gains.

We are now in a position to run our data frame against the score.sentiment 
function. We will show results for the three and sixteen year datasets. Both datasets 
and the code for both analyses are located on GitHub:

# using our score.sentiment function on BB.text$text against pos.words 
and neg.words
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# progress = 'text' is useful for monitoring scoring of large 
documents
# keep date and year since they are dropped in the score.sentiment 
output
> BB.keeps <- BB.text[,c("date", "year")]
# run score.sentiment on our text field using pos.words and neg.words
> BB.score<- score.sentiment(BB.text$text, pos.words, neg.words, 
.progress = 'text')
# add back BB.keeps to BB.score
> BB.sentiment <- cbind(BB.keeps, BB.score)
# colnames(BB.sentiment shows that we kept "text", "date", and "year" 
field as well as the # new column "score"
> colnames(BB.sentiment)
[1] "date"   "year"  "score"    "text" 

By examining BB.sentiment$score (the three year dataset), we discover a mean of 
33. In other words, most scores are already above zero, suggesting that the sentiment 
is positive, but thereby making interpretability difficult. To improve interpretability, 
we mean-center our data and shift our midpoint value from 33 to zero. The new, 
empirically adjusted center may be interpreted as an empirically neutral midpoint. 
The histograms shown after the following code display both raw scores and  
centered scores:

# calculate mean from raw score
> BB.sentiment$mean <- mean(BB.sentiment$score)
# calculate sum and store it in BB.sum
> BB.sum <- BB.sentiment$score
# center the data by subtracting BB.sum from BB.sentiment$mean
> BB.sentiment$centered <- BB.sum - BB.sentiment$mean
# we can label observations above and below the centered values with 1
# and code N/A values with 0
> BB.sentiment$pos[BB.sentiment$centered>0] <- 1
> BB.sentiment$neg[BB.sentiment$centered<0] <- 1
> BB.sentiment[is.na(BB.sentiment)] <- 0
# we can then sum the values to get a sense of how balanced our data.
> sum(BB.sentiment$pos)

[1] 673
> sum(BB.sentiment$neg)
[1] 683
# we can create a histogram of raw score and centered score to see the
# impact of mean centering
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> BB.hist <- hist(BB.sentiment$score, main="Sentiment Histogram",
xlab="Score", ylab="Frequency")
> BB.hist <- hist(BB.sentiment$centered, main="Sentiment Histogram",
xlab="Score", ylab="Frequency")

BB.text$score

20 25 30 35 40 45 50 -15 -10 -5 0 5 10 15 20

Score

Histogram of BB.text$score Sentiment Histogram

Histogram of BB.sentiment$score and BBsentiment$meancenter

Some of the upcoming plots will use a package named ggplot2, created by Hadley 
Wickham. Though difficult to master, ggplot2 offers some rather elegant and 
powerful graphing. This package is different from the package used for plotting in 
Chapter 2, Getting Started with R, and is shown here to offer diversity in the ways in 
which you may plot graphics. There are some rather good resources available if you 
are interested in learning more about ggplot2, but The Grammar of Graphics by Leland 
Wilkinson may be the most comprehensive:

# install and load ggplot2   
install.packages("ggplot2")
require(ggplot2)
# using the results from the function to score our documents we create
# a boxplot to examine the distribution of opinion relating to
# economic conditions the labeling assumes here that you imported
# summary file of three years
> BB.boxplot<- ggplot(BB.sentiment, aes(x = BB.sentiment$year, 
  y = BB.sentiment$centered, group = BB.text$year))+
  > geom_boxplot(aes(fill = BB.sentiment$year), 
  outlier.colour = "black", outlier.shape = 16, outlier.size = 2) 
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# add labels to our boxplot using xlab ("Year"), 
ylab("Sentiment(Centered)"), and ggtitle             # ("Economic 
Sentiment - Beige Book (2011-2013)")
> BB.boxplot<- BB.boxplot + xlab("Year") + ylab("Sentiment 
(Centered)") +
  ggtitle("Economic Sentiment - Beige Book (2011-2013)")
# draw boxplot
BB.boxplot

BB.boxplot
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This simple example exposes some interesting insight into the economic conditions in 
the United States as reflected by the Beige Book. The x axis shows year and the y axis 
reflects mean-centered sentiment. Immediately, we can see that both 2011 and 2013 
were below the mean sentiment over the entire document space (with the mean of 2013 
below that of 2011). The boxplot shows us that while 2012 was above the mean, it had 
quite a bit of variability as reflected by the large interquartile range. We can also use 
this visualization to make comparisons between years—note that 2011 has a higher 
median value than 2013 but also has lower values as shown by the lower hinge. We 
can also reduce the data to month-by-year instead of merely year to potentially expose 
further patterns and increased variability. The following boxplot uses a larger portion 
of the data and reflects the ups and downs of sentiment over time:

BB.boxplot

The screenshot after the following example shows economic sentiment with 
recession bars highlighted (2001-2002, 2007-2009):

# this code can be used to add the recession bars shown below where 
xmin and xmax    # are used to add vertical columns to our plot.
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> rect2001 <- data.frame (
  xmin=2001, xmax=2002, ymin=-Inf, ymax=Inf)
> rect2007 <- data.frame (
  xmin=2007, xmax=2009, ymin=-Inf, ymax=Inf)

# ggplot is an R package used for advanced plotting.
> BB.boxplot <- ggplot(BB.sentiment, aes(x=BB.sentiment$year, y=BB.
sentiment$centered,    group=BB.sentiment$year))
> BB.boxplot <- BB.boxplot + geom_boxplot(outlier.colour = "black",
     outlier.shape = 16, outlier.size = 2)
> BB.boxplot <- BB.boxplot + geom_rect(data=rect2001, aes(xmin=xmin,
     xmax=xmax, ymin=-Inf, ymax=+Inf), fill='pink', alpha=0.2, 
inherit.aes = FALSE)
> BB.boxplot <- BB.boxplot + geom_rect(data=rect2007, aes(xmin=xmin,
     xmax=xmax, ymin=-Inf, ymax=+Inf), fill='pink', alpha=0.2, 
inherit.aes = FALSE)
> BB.boxplot <- BB.boxplot + xlab("Date") + ylab("Sentiment
     (Centered)") + ggtitle("Economic Sentiment - Beige Book (1996-
2010)")
> BB.boxplot
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Economic Sentiment - Beige Book (1996-2010)

Boxplots with recession bars
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Case study 2 – Naive Bayes classifier
In the previous chapter, we described how Naive Bayes is a type of classifier, that 
is, a statistical model designed to estimate group membership of observations. 
If we have a sufficient amount of training data, we can use it to train or learn a 
statistical model that we can subsequently use to estimate the sentiment of other, 
unlabeled observations. The key assumption underlying this technique is that at 
least some words are used with different frequencies by those with positive and 
negative sentiments towards a particular target. This section walks through the 
implementation of Naive Bayes for sentiment classification.

For demonstrative purposes, we have scraped about 4,000 tweets using the methods 
set out in Chapter 3, Mining Twitter with R. About half include the hashtag #prolife, 
and the other half include the hashtag #prochoice. It seems likely that these tweets 
satisfy the earlier assumption; that is, tweets using each of these opposing hashtags 
likely use different words and phrases to a different extent. The following code 
sets up a data frame of the tweets and appends the variable "hash" (as in hashtag) 
to the data frame, where 1 denotes the use of #prochoice and 0 denotes the use 
of #prolife. As this is a supervised method, we use the hashtags as labels for the 
supervised learning process. The results of the model will allow us to categorize 
unlabeled tweets in future.

Suppose that all the tweets are in a list called abortion_tweets, as would be output 
by the searchTwitter function introduced in Chapter 3, Mining Twitter with R. Also, 
suppose that we've created a vector named hash, which is a set of 1's repeating for 
the number of prochoice tweets concatenated with a vector of zeroes as long as the 
number of prolife tweets, as follows:

# generate a data frame from the list of tweets
> require(twitteR)
> twtsdf<- twListToDF(abortion_tweets)

> twtsdf$hash<- hash

# Drop unneeded variables from the data frame
> keeps <- c("text", "id", "retweetCount", "isRetweet", "screenName", 
"hash")
> twtsdf<- twtsdf[,keeps]

The following loop generates a list of the tweets, where each tweet is broken into 
a vector of separate words rather than a sentence. It also compiles a list of the 
usernames, called names. Lastly, we separate and keep the vector of hashtags  
and name it outcome as shown in the following code snippet:
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> list.vector.words<- list()
> allwords<- NULL

> names<- NULL
  for (i in 1:dim(twtsdf)[1]){
    each.vector<- strsplit(twtsdf$text[i], split="")
    names<- c(names, twtsdf$screenName[i])
    allwords<- c(allwords, each.vector)
    list.vector.words[[i]] <- each.vector
}

> outcome<- twtsdf$hash

Next, we use the tm package to create a corpus like the one shown in Chapter 3, 
Mining Twitter with R. Also, we'll remove the hashtags, as we are going to treat that 
information as labels for the supervised learning process as follows:

>require(tm) 
# make a corpus
> dat.tm <- Corpus(VectorSource(list.vector.words)) 
# convert all words to lowercase
> dat.tm <- tm_map(dat.tm, tolower) 
# remove punctuation
> dat.tm <- tm_map(dat.tm, removePunctuation) 
# remove the hashtags
> dat.tm <- tm_map(dat.tm, removeWords, words=c("prochoice")) 
> dat.tm <- tm_map(dat.tm, removeWords, words=c("prolife")) 
# remove extra white space
> dat.tm <- tm_map(dat.tm, stripWhitespace) 
# stem all words
> dat.tm <- tm_map(dat.tm, stemDocument) 

Next, we create a document-term matrix, with one twist. Instead of using single 
words, we use bigrams (ordered two-word pairs). Thus, instead of breaking the 
sentence "See spot run" into three single words, we make two bigrams, "see spot" and 
"spot run." This helps us capture more nuance than single words, which helps deal 
with extreme sentiments and negation as follows:

# create a bigram tokenizer using the RWeka package 
> require(RWeka)
> BigramTokenizer<- function(x) NGramTokenizer(x, Weka_control(min = 
2, max = 2))
# create the document-term matrix
> datmat<- DocumentTermMatrix(dat.tm, control = list(tokenize = 
BigramTokenizer))
> dat<- as.matrix(datmat)    
# Add user names as rownames to matrix
> rownames(dat) <- names
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Only bigrams that are used by a sufficient number of authors are useful. Thus, we 
need a bit of code to remove bigrams that are uncommon. The following lines create 
a vector of the column sums (that is, the number of times each bigram is used) and 
then creates a table of those column sums:

> word.usage<- colSums(dat)
> table(word.usage)

There is no hard-and-fast rule about the lower limit on the number or proportion 
of uses of a bigram necessary to keep it. We recommend starting out with a low 
number, such as 9, and working upwards from there as shown in the following code:

# first, set all values in the matrix that are greater than 1 to 1
> dat[dat>1] <- 1
> threshold <- 9  # set a threshold         
> tokeep <- which(word.usage>threshold)   
# find which column sums are above the threshold
# keep all rows, and only columns with sums greater than the threshold
> dat.out<- dat[,tokeep] 

The last processing step is to drop users who use a very small number of bigrams. 
The logic is the same as when we dropped the least common bigrams: users who use 
different words from all the other users are hard to model. Again, there is a bit of art 
here. We recommend only keeping users who used at least two bigrams, though you 
may want to increase this if the documents you are using are larger than tweets, as 
shown in the following code:

# Drop users with few words....
# find how many zeroes are in each row
> num.zero <- rowSums(dat.out==0)

# explore data by making a table; can inform choice of cutoff
> table(num.zero)   
# the number of columns of the document bigram matrix    
> num_cols <- dim(dat.out)[2]  
# users must have used this many bigrams to scale
> cutoff <- 2     
# create a list of authors to keep        
> authors_tokeep <- which(num.zero <(num_cols-cutoff))  
# keep only users with 2 bigrams  
> dat.drop <- dat.out[authors_tokeep,] 
# similarly, drop those users from the vector of hashtags   
> outcome <- outcome[authors_tokeep]      
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Finally, we are ready to implement the model. To do so, we'll load the e1071 
package, a general-purpose data-mining package. Then, we set up the data so that 
it is back in the data frame format, with the outcome variable, hash, turned into 
a factor. Factors are data storage types that are good for holding integer-valued 
variables, as shown in the following code:

> require(e1071)
# append the outcome to the first column of dat.drop
> myDat <- cbind(outcome, dat.drop)
# turn the doc-term matrix into a data frame
> myDat <- as.data.frame(myDat)
# turn the outcome variable (first column) into a factor
> myDat[,1] <- as.factor(myDat[,1])

Finally, a single line of code implements the model. We will save the model as 
an object called NBmod. The first argument to the NaiveBayes function lists the 
predictors, while the second argument gives the outcome variable. We use a trick 
to capture all of the columns of myDat except the first one; using a negative number 
means "include all but this item", as shown in the following code:

# run the model; save the results to an object
> NBmod<- naiveBayes(myDat[,-1], myDat[,1])

We should expect our model to perform well on the data on which it was trained,  
or "in sample". To get a sense of how our model performed, we can make a confusion 
matrix that compares actual values of the outcome variable to predicted values as 
follows:

# generate a vector of predictions
# arguments: estimated model, predictors, outcome to predict
> NBpredictions <- predict(NBmod, myDat[,-1])
# pull out the actual outcomes
> actual<- myDat[,1]
# make the confusion matrix
> table(NBpredictions, actual, dnn=list("predicted", "actual"))

actual
predicted        0        1
        0           339     24
        1           617    825
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Elements in this table on the main diagonal (the top-left and bottom-right cells) 
are correctly predicted. The table shows that, in the sample, our percent correctly 
predicted (PCP) is about 65 percent. The degree to which our model is accurate will 
be a function of several parameters. First, the more training data we use, the more 
accurate our model will be (in sample). Second, the model's accuracy will increase 
with the divergence in the word-use patterns between our two sentiment groups. 
Lastly, the larger the documents included in this type of analysis, the better the 
accuracy of the model. Thus, this model is a bit tenuous for Twitter data and only 
achieves a modest in-sample accuracy.

The point of this type of model is not to check its accuracy on existing sentiment 
data. Rather, we want to use this model to predict the sentiment of unlabeled 
observations. One simple way to accomplish this is to preprocess the unlabeled 
data along with the labeled data. Then, estimate the model on only the labeled data. 
Finally, use the trained model to predict the values of the unlabeled observations. To 
simulate this, suppose we had preprocessed some data as we did earlier but with 500 
#prolife and 500 #prochoice tweets and additionally 100 tweets with the hashtag 
#abortion. Then, we could estimate the model and predict the values of the 100 
unlabeled tweets with the following code:

# run the model on the 1000 labelled instances
> NBmod<- naiveBayes(myDat[1:1000,-1], myDat[1:1000,1])
# predict outcomes for the last 100 unlabeled instances
> NBpredictions<- predict(NBmod, myDat[1001:1100,-1])
# make a table of the predictions
> table(NBpredictions)

actual
predicted       0         1
        0           24        0
        1           27       49

Interestingly, this model predicts better on the test set than on the training set (73 
percent accuracy). This is a bit of an anomaly; generally, we should not expect test 
results to be stronger than training accuracies, unless, by some chance, the test data 
is more well behaved than the training data. Overall, the Naive Bayes classifier 
is a useful tool for estimating sentiment valence. It is quick to estimate and has 
reasonable accuracy. However, as we saw in this example, it requires training data 
with binary scores already assigned.
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Case study 3 – IRT models for 
unsupervised sentiment scaling
The theoretical underpinnings of IRT models were set out in the previous chapter. 
Here, we briefly review them before demonstrating how to implement this class of 
models. However, readers should note that this class of model is cutting-edge, to the 
point of being considered experimental.

IRT models for text analysis start with the strong assumption that texts (or authors 
thereof) lie along a continuum, and that this continuum directly affects their word 
choices in a monotonic way such that if word use is likely at one end of the spectrum, 
it is unlikely at the other. These assumptions are somewhat restrictive; we can only 
scale texts that deal with moderately narrow topics and that are subject to word 
choice differences. Furthermore, it is important that the sentiment continuum be that 
underlying continuum; else, the model will estimate whatever continuum underlies 
the data. A good example would be the debate about the Affordable Care Act, 
wherein liberals occasionally refer to it by name, while conservatives are more likely 
to refer to it as Obamacare. Note that for IRT methods to function, these differences 
only have to be probabilistic (that is, some liberals certainly call it Obamacare some 
of the time), and these word choice differences have to be consistent across a number 
of terms, not just one.

As an example, we can use the same Twitter data set out in the section on Naive 
Bayes. We should suspect that these tweets meet the assumptions made earlier, 
namely, there is a single underlying continuum of sentiment about a single 
moderately narrow topic, and that that continuum likely affects the word choice of 
each author.

The preprocessing steps are very similar to those of the Naive Bayes application 
discussed in the previous section. To begin, take the same initial steps: collect 
tweets with one (or more) searchTwitter call(s); turn them into a data frame called 
tweetsdf; and append an outcome variable called hash to this data frame. Again, 
these steps are exactly the same as the ones discussed earlier, and are thus not 
repeated. One difference is that, before continuing, we will drop retweets from the 
data frame. The reason is that including a large number of retweets affects scaling 
negatively. It is a best practice to drop the retweets and then just give all tweets with 
the same text the same scale after running the IRT model. The following line of code in 
English reads: put into twtsdf all of the rows in twtsdf where the variable isRetweet 
is FALSE.

> twtsdf<- twtsdf[twtsdf$isRetweet == FALSE,]
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Next, we continue following the Naive Bayes preprocessing steps by dropping the 
unnecessary variables from the data frame. After that, we execute the for loop that 
generates our list of vectors of words, create a corpus, and turn it into a document-
term matrix, just as done earlier.  We normalize all cells to one, and then drop 
infrequent bigrams, as in the Naïve Bayes example.

The second difference in the preprocessing steps for IRT is that we need to aggregate 
all of the tweets by user, that is, collapse the document-term matrix such that there 
is only one row per user instead of one row per tweet. This step follows from the 
fact that IRT models assume that all of an author's word choices are affected by his 
or her position on the underlying continuum. Thus, we aggregate all of their tweets 
together as shown in the following code snippet:

# pull out list of words
> words<- colnames(dat.out)
# aggregate by rowname (i.e. twitter user name), and sum rows with the 
same user name
> dat.agg<- aggregate(dat.out, list(rownames(dat.out)), sum)
# aggregating makes a variable called Group.1; turn this back into the 
matrix rowname
> names<- dat.agg$Group.1
> dat.agg<- as.matrix(dat.agg[,2:dim(dat.agg)[2]])
# set cells greater than 1 back to 1
> dat.agg[dat.agg>1] <- 1
> rownames(dat.agg) <- names

This bit of code similarly aggregates our hashtag vector, which we will use for model 
checking later:

> outcomes<- as.matrix(twtsdf$hash)
> rownames(outcomes) <- rownames(dat.out)
> outcomes.agg <- aggregate(outcomes, list(rownames(outcomes)), mean)
> hashscores<- round(outcomes.agg$V1)

The final preprocessing step mimics that of Naive Bayes: we drop users who use  
a very small number of bigrams. In Twitter examples, we find that only keeping 
users who employ at least four key bigrams makes a good choice, though there is  
no hard-and-fast rule about this:

> num.zero <- rowSums(dat.agg==0)

# explore data by making a table; can inform choice of cutoff
> table(num.zero)   
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# the number of columns of the document bigram matrix    
> num_cols <- dim(dat.out)[2]  
# users must have used this many bigrams to scale
> cutoff <- 4     
# create a list of authors to keep        
> authors_tokeep <- which(num.zero <(num_cols-cutoff))  
# keep only users with 2 bigrams  
> dat.drop <- dat.out[authors_tokeep,] 
# similarly, drop those users from the vector of hashtags   
> outcome <- outcome[authors_tokeep]    

After all that processing, we are ready to implement the model. The package 
we employ, pscl, was designed for political science uses, hence the mentions 
of legislators, votes, and roll-calls. The rc function sets up the data matrix for 
estimation, while the ideal function estimates the logistic model described in the 
previous chapter as follows:

> require(pscl)
> rc <- rollcall(data=dat.drop)     # sets up the data
# executes the model (this may take several minutes)
> jmod <- ideal(rc,store.item=T)    

Now we have a new object named jmod. The xbar variable captures the scale positions 
of every author for whom we had enough data to scale. One thing we may want is  
a list of all of the scaled positions of all users as shown in the following code snippet:

> scaled.positions<- data.frame(jmod$xbar)     # make a new data frame 
of the scale
> rownames(scaled.positions) <- rownames(dat.drop)    
# make the rownames sensible
> colnames(scaled.positions) <- "scale"       
# give the single variable a good name
> head(scaled.positions)            
# list the first few scaled positions
# note: these are not real user names
scale
exUser1          0.739675498
exUser2          -0.099127391
exUser3          0.466915634
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Another way to look at this data is to draw a histogram of all of the scaled positions:

> hist(jmod$xbar, main= "Scaled Positions of Twitter Users", xlab= 
"relative position")

relative position

-1.5 -1.0 -0.5 0.0 0.5 1.0

Scaled Positions of Twitter Users

The histogram shows the overall distribution of positions in the data. Some care 
needs to be taken in interpreting these values. Foremost, these values are relative 
to one another. Put in a different way, these numbers describe distances between 
authors but not compared to any true values. This means that zero, rather than 
meaning neutral, probably means something closer to central. Similarly, the score 
only captures the fact that an author at zero is to the left of authors at 0.1, and to the 
right of authors at -0.1. This means that, had we only scaled the prochoice tweets,  
we still would have had a distribution centered at zero, even though all of the  
tweets being scaled would be to the right of center. 
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A second caution concerns authors scaled at or near zero. These may be centrist 
authors; however, authors  
that are difficult to scale also end up in the center. This may be because they use few 
bigrams or because they use conflicting bigrams (some to the left and some to the 
right). The point is to note that zero may not mean center; it may also mean  
"I'm not sure".

Additionally, the model has no sense of left or right; it just assigns numbers to 
authors. To figure out whether authors with scores of +1 are liberals or conservatives, 
we need to examine the tweets of a couple of authors from each end. First, identify a 
handful of authors with large, positive scale values, and then go back to the original 
data frame and read their tweets. This should give you a sense of which end of the 
scale is which. Additionally, it should give you an idea of whether the underlying 
scale estimated corresponds to the latent dimension you had hoped to capture, that 
is, sentiment. The following is a list of positive authors:

> scaled.positions[scaled.positions$scale> 0.9,]   
# generates a list of large, positive authors
# these are just examples, not real users
> MrTweeter             0.9137                        
> AnotherTweeter         0.9442

Then, go back to the original data frame and pull up the tweet(s) from those users. 
This should tell you if the people on the positive end of this scale are on the left or 
right. You should check several of these from both ends. People on the same end of 
the scale should have the same views, generally. If not, the model may have failed  
or pulled out an underlying continuum other than the one you were looking for!

> twtsdf[twtsdf$id== "MrTweeter",]
1   This would be MrTweeter's original tweet and hashtag.
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Also, we may be interested in the difficulty and discrimination parameters 
of each bigram. We can get a sense of both by plotting one against the other. The 
jmod$betabar[,2] parameter is the difficulty parameter, and jmod$betabar[,1]  
is the discrimination parameter.

> plot(jmod$betabar[,2], jmod$betabar[,1], 
    xlab="difficulty", ylab="discrimination", main="Bigrams")
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On this graph, each point represents a bigram. The x axis represents how hard it 
is for a user to use a bigram; essentially, this is a measure of the bigram's rarity. 
The y axis plots each bigram's discrimination, that is, the extent to which it is more 
likely to be used by those on one side of the scale or the other. For instance, bigrams 
with large, positive discrimination parameters are likely to be used by those on the 
right-hand side of the scale and unlikely to be used by those on the left-hand side. 
The sign determines left/right, and the magnitude represents how strong the effect 
is. Bigrams with near-zero discrimination parameters are equally used by authors 
on all parts of the scale. Examining this graph, we see that most bigrams are not 
discriminating between sides of the scale. Additionally, there is a strong correlation 
between difficulty and discrimination; bigrams that are used frequently do not 
discriminate much, whereas more infrequently used bigrams discriminate better. 
This is a classic pattern in scaling applications; absence of this type of flying V pattern 
is evidence that scaling has failed or that the model has picked up an underlying 
continuum that is bizarre or nonsensical.

If you want to get a sense of the most discriminating bigrams, you can generate  
a list with the following code, which uses the plyr package for its convenient 
arrange() function:

# identify which words have large discrimination parameters
# abs() returns the absolute value
> t <- which(abs(jmod$betabar[,1]) >1)
> twords<- colnames(dat.drop)[t]
> tnums<- jmod$betabar[,1][t]
# make a data frame of the discriminating words
> bigwords<- data.frame(twords, tnums)
> bigwords<- arrange(bigwords,desc(bigwords$tnums))

Finally, since we know what side of the abortion issue all of our users were on, 
we can plot them and color code the hashtag they used (this is why we saved the 
hashtags during data processing). In real, unsupervised sentiment analysis settings, 
you would not have this information, but since we do, we can use it to check the 
accuracy of the model as follows:

# make a vector, o, of the order of the scale positions
> o <- order(jmod$xbar)
# plot the scale against an arbitrary y value; zero to number of users
# color code each point according to its hashtag with the 'col' 
parameter
> plot(jmod$xbar[o], seq(1:length(jmod$xbar)), col=-outcome[o]+3)
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We've put the results of this code in the following graph, and also added a text 
callout of a couple of the tweets and a legend for readability. The code for the extras 
is simple and can be found on this book's web page on the Packt Publishing website:

The x axis here represents the scale position, while the y axis is arbitrary. The green 
points are those tweets that used #prolife, whereas the red ones used #prochoice. 
We can see, generally, that most of the red points are to the left of zero, while most 
of the green points are to the right of zero. Thus, the model seems to have scaled 
most of these tweets accurately. However, the model has a tough time discriminating 
authors near the middle of the scale, which is common in scaling applications. 
Additionally, note the group of mis-characterized tweets in the upper-left corner. 
On further examination, these are users who tweeted prochoice-related phrases, but 
used them ironically. The model, not recognizing irony, incorrectly put these tweets 
with the prochoice tweets. This is a common hurdle in text analysis and represents a 
fruitful area for future research.

Summary
Social media mining is technical, and is occasionally as much an art as a science.  
We hope to have given readers a leg up on the subject by walking them through 
these extended case studies, each involving a different style of analysis. However, 
gaining a mastery of these techniques will certainly entail readers scraping their own 
text-based data, and applying the tools demonstrated here. As you do so, we hope 
you remain careful about the pitfalls listed in Chapter 4, Potentials and Pitfalls of Social 
Media Data, and proceed with due thought and care.



Conclusions and Next Steps
Social media has become ubiquitous, as has the understanding that harnessing it 
is crucial to measuring the sentiments of an increasingly plugged-in population. 
Ignoring this information while acknowledging its presence, whether for businesses 
or civic purpose, constitutes an informal logical fallacy. Those businesses, politicians, 
social movements, and researchers who choose to ignore this data do so at their own 
peril and to their own detriment.

Final thoughts
People are highly opinionated and compelled to share with others. The advent of 
the social web has given them a tremendous new venue to do so, and explains, in 
part, the explosive growth in text data. These personal opinions are valuable; rather 
than being fleeting or trivial, they are both predictive of and caused by individual 
intentions. Over the last decade, scholars and practitioners of social media mining 
have developed techniques to measure and thus glean insights from textual opinion 
data. These tools are crucial, especially since much text data does not come with 
easily quantifiable opinions such as the availability of stars, likes, or thumbs-ups 
that can be easily counted.

With the expanding availability of data and the increasing sophistication and 
usability of text data mining tools, social media mining is more accessible to a 
wide array of practitioners. An increasing number of social scientists, businesses, 
politicians, and media outlets put themselves at a stark disadvantage by ignoring 
this source of insight. Social scientists are now able to tap the sentiments of larger 
and harder-to-reach populations. Industries can now obtain granular reactions to 
products and adjust their offerings accordingly based on large samples, rather than  
a few poignant complaints. Politicians can gauge the desires of their constituents,  
the polarity of issues, and the effectiveness of their campaigns. Meanwhile, media 
outlets can not only track the interest in their stories, but also more easily take the 
pulse of the population on which they report.
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The opinionated and plugged-in nature of people has driven the growth of text 
data; however, it is techniques like the ones outlined in this book that help add 
measurable value to that text. Techniques like the ones outlined in this book help 
explain the value of that text. Up until the last 40 years, these opinions were a part of 
small networks and shared mainly with first order neighbors. The data was hard if 
not impossible to collect, and few methods existed to examine the data. Nowadays, 
however, the data is available and the methods are maturing. We hope this book 
gives practitioners and scholars a quality entry point to the study and use of opinion 
mining techniques, and that it invests them with the knowledge necessary to explore 
textual data in a systematic and rigorous manner.

An expanding field
The field of sentiment analysis is growing quickly. Google Scholar reports nearly 
70,000 articles including the words sentiment analysis published from 2012 to 2013; 
three and a half times as many as were published in the preceding annum. Assuredly, 
this growth is due in part to the wide array of purposes to which people apply 
sentiment analysis and text mining. Beyond the number of applications is the power of 
social media data; one study (Brynjolfsson, 2011) found that technology investments of 
179 large publicly-traded firms that adopted data-driven decision making have output 
and productivity five to six percent higher than what would otherwise be expected; 
in an era when data provably matters for high-stakes decisions, being able to make 
new quantities measurable will certainly be a benefit. What would be the impact on 
your organization if you could improve output and productivity by a mere five to six 
percent? Or, what would be the social impact of a policy that was five to six percent 
more effective?

Before setting you off to conduct your own research, however, we again implore you 
to take care with your analyses, for they often come with consequences. Numbers, 
and especially measurements, tend to get reified in unhealthy ways such as IQ and 
BMI have been in the last two decades. Knowing this, it is especially important 
that you think hard about your measurements and deliver them with appropriate 
caveats. Consider carefully the population of people to which you can extrapolate; 
the users of social media are often young and urban. Furthermore, beware of 
contexts in which people have incentives to provide or promote biased opinions  
such as when writing about rivals. Lastly, carefully consider a new trend in paid 
opinion writing, wherein companies or advertisers hire tech-savvy authors to spam 
social media with favorable information about them. Detecting these strategic 
actors may in fact be an interesting research area in the field over the next decade. 
However, if you chose to analyze social data, the need will remain to be vigilant of 
its pitfalls. That said, the promise of social media data is great, if it can be leveraged 
with care.
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Further reading
For more information, you can refer to the following books:

• Taming Text: How to Find, Organize, and Manipulate It, Ingersoll, Morton, and 
Farris: This is a pragmatic volume that covers exactly what its title promises. 
As data scientists, it has been noted that we spend around 80 percent of our 
time arranging our data for analysis. This book can help to trim that figure, 
allowing you to spend more time analyzing and interpreting, rather than 
data munging.

• Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, 
GitHub, and More, Matthew Russell: This is an excellent resource for 
practitioners wanting to learn how to get their hands on a wide array of 
social and web data. The book also features a companion piece that deals 
with analyzing social data. Readers should note that this pair of books 
utilizes Python rather than R.

• Speech and Language Processing, Jurafski and Martin: This book provides a 
slightly more advanced and fairly wide review of many techniques and 
technologies applied to language. This book is slightly more technical than 
Social Media Mining in R; it is likely inappropriate for those unfamiliar with 
optimization.

• The Handbook of Computational Linguistics and Natural Language Processing, 
Clark, Fox, and Lappin: This is another fairly broad book that covers many 
NLP topics, but with more of a focus on machine learning than theoretical 
statistics. It is suitable for graduate-level students and researchers.

• Machine Learning with R, Brett Lanz: This is a nice volume that covers a wide 
array of machine-learning algorithms. While not aimed specifically at social 
media, readers will find several of the techniques applicable.

• Finding Groups in Data: An Introduction to Cluster Analysis, Kaufman and 
Rousseeuw: This is a well-crafted book that makes an excellent first read on 
clustering techniques, which we mentioned in Chapter 3, Mining Twitter with 
R. The book covers several clustering techniques in an intuitive and non-
technical manner.

• A First Course in Statistical Programming with R, Braun and Murdoch: This is an 
excellent resource for the world's most popular and fastest-growing statistical 
programming language. This book goes into great detail about programming 
constructs and graphical parameters, all with an eye towards building  
a student's competencies in applied statistics.

• Designing Social Research, Normal Blaikie: This is an excellent first book on 
research design. It carefully walks readers through knowledge areas such  
as theory testing, measurement, and inference.
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